
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 5:2 (2025) Article #S2R16
https://doi.org/10.54550/ECA2025V5S2R16

Chip Firing on Directed k-ary Trees

Ryota Inagaki1, Tanya Khovanova2, and Austin Luo3

1Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 2, Cambridge, MA
02139

Email: inaga270@mit.edu

2Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 2, Cambridge, MA
02139

Email: tanyakh@yahoo.com

3Morgantown High School, 109 Wilson Ave, Morgantown, WV 26501
Email: austinluo116@gmail.com

Received: December 2, 2024, Accepted: March 29, 2025, Published: April 4, 2025
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: Chip-firing is a combinatorial game played on a graph in which we place and disperse chips on
vertices until a stable state is reached. We study a chip-firing variant played on an infinite rooted directed k-ary
tree, where we place k` chips on the root for some nonnegative integer `, and we say a vertex v can fire if it has
at least k chips. A vertex fires by dispersing one chip to each out-neighbor. Once every vertex has less than
k chips, we reach a stable configuration since no vertex can fire. We determine the exact number and describe
patterns of chips in the possible stable configurations of chips in the setting where chips are distinguishable.

Keywords: Decreasing Subsequences; Directed Trees; Labeled Chip-Firing; Permutations
2020 Mathematics Subject Classification: 05C57; 05C63; 05A05; 05A15

1. Introduction

The game of chip-firing depicts a dynamical system and is an important part of the field of structural combina-
torics. Chip-firing originates from problems such as the Abelian sandpile studied by Bak,Tang, and Wiesnfield [3]
and Dhar [10], which states that when a stack of sand grains exceeds a certain height, the stack will disperse
grains evenly to its neighbors. Eventually, the sandpile may achieve a stable configuration, which is when every
stack of sand cannot reach the threshold to disperse. This idea of self-organizing criticality combines a multitude
of complex processes into a simpler process. Chip-firing as a combinatorial game on graphs began from the
works such as those of Spencer [24], Anderson, Lovász, Shor, Spencer, Tardos, and Winograd [2] and Björner,
Lovász, and Shor [5]. Many variants of the chip-firing game (see, for instance, [7,14,15]) allow the discovery of
unique properties. For example, in [14,15], certain classes of stable configurations can be described as a critical
group. When the chips are distinguishable, numerous properties of chip firing with indistinguishable chips fail,
prompting a new area of study.

1.1 Unlabeled Chip-Firing on Directed Graphs

Unlabeled chip-firing occurs when indistinguishable chips are placed on vertices in a directed graph G = (V,E).
If a vertex has enough chips to transfer one chip to each out-neighbor, then that vertex can fire. In other words,
if there are at least outdegree(v) chips on a vertex v, it can fire. When a vertex fires, it sends one chip to each
neighbor and thus loses outdegree(v) chips. Once all vertices can no longer fire, we reach a stable configuration
(see Section 2 for the full definition).

Example 1.1. Figure 1 shows the unlabeled chip-firing process when we start with 4 chips at the root of an
infinite binary tree.

Ryota Inagaki, Tanya Khovanova, and Austin Luo

4

· · · · · · · · · · · ·

2

1

· · · · · ·

1

· · · · · ·

(a) Initial configuration with 4 chips (b) Configuration after firing once

2

· · · · · ·

2

· · · · · ·

1

· · ·

1

· · ·

1

· · ·

1

· · ·

(c) Configuration after firing twice (d) Stable configuration

Figure 1: Example of unlabeled chip-firing on an infinite directed, rooted binary tree

Let us define a configuration c as a distribution of chips over the vertices of a graph, which is represented as a
vector ~c in N|V | (the set of infinite sequences indexed by the nonnegative integers whose entries are nonnegative
integers), where the kth entry in ~c is the number of chips on vertex vk of the graph. One important property
of directed graph chip-firing with unlabeled chips is the following property, which is analogous to the “global
confluence” property for chip-firing on undirected graphs (c.f. Theorem 2.2.2 of [20]) and stabilization of the
Abelian Avalanche model of Gabrielov [12,13]:

Theorem 1.1 (Theorem 1.1 of [4]). For a directed graph G and initial configuration c of chips on the graph,
the unlabeled chip-firing game will either run forever or end after the same number of moves and at the same
stable configuration. Furthermore, the number of times each vertex fires is the same regardless of the sequence
of firings taken in the game.

1.2 Labeled Chip-Firing on Directed Graphs

Labeled chip-firing is a variant of chip-firing where the chips are distinguishable. We denote this by assigning
each chip a number from the set of {1, 2, . . . , N} where there are N chips in total. A vertex v can fire if it has
at least outdegree(v) chips. When a vertex fires, we choose any outdegree(v) labeled chips and disperse them,
one chip for each neighbor. The chip each neighbor receives may depend on the label of the chip. Labeled chip-
firing was originally studied in the context of one-dimensional lattices by Hopkins, McConville, and Propp [17].
Labeled chip-firing has been studied on infinite binary trees when starting with 2`−1 chips at the root for some
` ∈ N (where 0 ∈ N) by Musiker and Nguyen [21] and by the authors of this paper in [18].

In this paper, we study labeled chip-firing in the context of infinite directed k-ary trees for k ≥ 2. Let us
consider an infinite directed 2-ary tree, or in other words, an infinite directed binary tree. Since each vertex
v has outdegree(v) = 2, a vertex can fire if it has two chips. When a vertex fires, we arbitrarily select two
chips and send the smaller chip to the left child and the larger one to the right. Note that when we say a chip
is smaller or larger than another chip, we refer to the numerical values of the labels assigned to them. The
mechanics of chip firing on k-ary trees is a straightforward generalization of the above.

In labeled chip-firing, Theorem 1.1 does not hold. This means that we can achieve different stable config-
urations depending on the sets of chips we arbitrarily select to fire. More precisely, two stable configurations
would always have the same number of chips at each vertex, but the labels might differ.

Example 1.2. Consider a directed binary tree where each vertex has two children with 4 labeled chips: (1, 2, 3, 4)
at the root. Notice that since chips are only sent along directed edges, once a chip is sent to the left or right, it
cannot go back. Therefore, if we fire the pair of chips (1, 2) first, we end up with a different stable configuration
than if we fire the pair (2, 3) first. Figure 2 illustrates this initial firing.

ECA 5:2 (2025) Article #S2R16 2

Ryota Inagaki, Tanya Khovanova, and Austin Luo

{3, 4}

{1}

· · · · · ·

{2}

· · · · · ·

{1, 4}

{2}

· · · · · ·

{3}

· · · · · ·

(a) Configuration after firing (1, 2) (b) Configuration after firing (2, 3)

Figure 2: Example of confluence breaking

Therefore, to obtain certain stable configurations, we pick certain sets of chips to fire, which is seen in
Section 4. Thus, we are motivated to study the properties of labeled chip-firing, such as the number of stable
configurations and where certain orders of labeled chips can appear in the stable configurations.

1.3 Objectives and Roadmap

Our problems are similar to those studied by Musiker and Nguyen in [21], but in the context of labeled-chip
firing on directed k-ary trees, we can ask:

• How many different stable configurations are there?

• What does the stable configuration look like?

In Section 2, we more precisely introduce labeled chip-firing on directed k-ary trees and provide important
definitions describing our setup. In Section 3, we find the number of possible final stable configurations for a
directed k-ary tree starting with k` labeled chips at the root in terms of Ck,m, the mth k−dimensional Catalan
number. In Section 4, we prove general results on what configurations are possible. In particular, in a stable
configuration, only vertices on layer ` + 1 have chips. Moreover, each vertex has exactly one chip. Thus, each
stable configuration corresponds to a permutation.

In Section 5, we introduce the digit-reversal permutation Rk(`), and we prove that it describes an attainable
stable configuration Zk(`). In Section 6, we find that the permutation corresponding to Zk(`) has the largest
possible number of inversions, which is

k2` − `k`+1 + (`− 1)k`

4
,

among all permutations corresponding to stable configurations. In Section 7, we find that the longest decreasing
subsequence in Zk(`) has length (k+ 1)k`/2−1− 1 if ` is even and 2k(`−1)/2− 1 if ` is odd. Finally, in Section 8,
we use our results from Section 7 to prove a lower and an upper bound for the longest possible decreasing
subsequence that can appear in a stable configuration.

2. Definitions and Basic Results

2.1 Definitions

In this paper, we consider infinite rooted directed k-ary trees as our underlying graphs.
In a rooted tree, we denote one distinguished vertex as the root vertex r. Every vertex in the tree, excluding

the root, has exactly one parent vertex. A vertex v has parent vp if there is a directed edge vp → v. If a vertex
v has parent vp, then vertex v is a child of vp.

An infinite directed k-ary tree is defined as an infinite directed rooted tree where each vertex has outdegree
k and indegree 1 (except the root, which has k children but zero parents). The edges are directed from a parent
to children.

We define the initial state of chip-firing as placing N chips on the root where, in the case of labeled chip-
firing, they are labeled 1, 2, . . . , N . A vertex v can fire if it has at least outdegree(v) = k chips. When vertex
v fires, it transfers a chip from itself to each of its k neighbors. In the setting of labeled chip firing, when a
vertex fires, it chooses and fires k of its chips so that among those k chips, the one with the ith smallest label
gets sent to the ith leftmost child from the left. A strategy is a procedure dictating an order in which k-tuples
of chips on a vertex get fired from which vertex. In this paper, we assume k ≥ 2 since if k = 1 and the tree has
any positive number of chips, then the chip-firing process can continue indefinitely.

ECA 5:2 (2025) Article #S2R16 3

Ryota Inagaki, Tanya Khovanova, and Austin Luo

We define a vertex vj to be on layer i + 1 if the path of vertices traveled from the root to vj traverses i
vertices. Thus, the root r is on layer 1.

The following is the labeling procedure for vertices. Let us take the set of vertices on a layer `. We label

the vertices vi, vi+1, . . . , vi+j on layer ` where i = k`−1−1
k−1 + 1 and j = k`−1 − 1. For vertex vi, the jth leftmost

child has label vk(i−1)+j+1.Figure 3 represents the labeling for the first 3 layers in the directed 3-ary tree

v1

v2

v5 · · ·
v6 v7

v3

v8 · · ·
v9 v10

v4

v11 · · ·
v12 v13

Figure 3: Labeling for 3 layers in directed 3-ary tree

We denote the straight left descendant of a vertex vn as any vertex vj where j > n such that if we take
the path of vertices from vj to vn, each vertex on the path traversed is the left-most child of their parent and
the straight right descendant is defined similarly. If the straight left descendant of a vertex vn is on the last
layer with chips in the stable configuration, it is called the bottom straight left descendant of vn, and the bottom
straight right descendant is defined similarly. A vertex vn is a top straight ancestor of vertex vj if vertex vn is
the left-most child of its parent and vertex vj is a straight right descendent of vertex vn or vice versa. In the
case of the root, it is considered the top straight ancestor of the left and right descendants.

The stable configuration is a distribution/placement of chips over the vertices of a graph such that no vertex
is able to fire. In this paper, we write each stable configuration as a permutation of 1, 2, . . . , k`, which is the
sequence of chips in the (` + 1)st layer of the tree in the stable configuration read from left to right. This is
because, as we will see in the next subsection, the stable configuration will have one chip at each vertex in layer
`+ 1. This is our convention for the rest of this paper (for instance, the stable configuration in Figure 4 would
be denoted by permutation/sequence 1, 2, 3, 4).

2.2 Unlabeled Chip-Firing on Directed k-ary Trees

We first examine properties of unlabeled chip-firing on infinite directed k-ary trees (i.e., ignoring labels) when
starting with k` chips at the root where ` ∈ N+. As the stable configuration and the number of firings do not
depend on the order of firings, we can assume that we start from layer 1 and proceed by firing all the chips on
the given layer before going to the next layer. Thus, for each t ∈ {1, 2, . . . , `}, each vertex on layer t fires k`−t

times and sends k`−t chips to each of its children. In the stable configuration, each vertex on layer ` + 1 has
exactly 1 chip, and for all i 6= `+ 1, the vertices on layer i have 0 chips.

2.3 Labeled Chip-Firing on Directed k-ary Trees

We now give an example of a labeled chip-firing game on the directed k-ary tree for k = 2 and establish a useful
lemma on the positions of the smallest and largest chip in the stable configuration of labeled chips.

Example 2.1. Consider again a directed binary tree with 4 labeled chips: (1, 2, 3, 4) at the root. Figure 4 shows
a possible sequence of firings that stabilizes a binary tree starting with 4 labeled chips at the root.

In the previous example, observe that given that a vertex fires a set of ordered pairs of labeled chips, any
order in which those pairs of chips are fired yields the same distribution of chips to the children. This is a fact
that holds in general: in chip-firing on directed k-ary trees, given that a vertex fires a set of k-element tuples of
labeled chips, any order in which those k-tuples of chips are fired yields the same distribution of chips to the
children.

We conclude the section with the final positions of the chips with the smallest and largest labels.

Lemma 2.1. If we start with k` labeled chips at a vertex v, then, in the stable configuration, the bottom straight
left descendant and bottom straight right descendant of any vertex v contain the smallest and largest chips,
respectively, in the subtree with root v.

ECA 5:2 (2025) Article #S2R16 4

Ryota Inagaki, Tanya Khovanova, and Austin Luo

{1, 2, 3, 4}

· · · · · · · · · · · ·

{1, 4}

{2}

· · · · · ·

{3}

· · · · · ·
(a) Initial configuration with 4 chips (b) State after firing root once

{1, 2}

· · · · · ·

{3, 4}

· · · · · ·
{1}

· · ·
{2}

· · ·
{3}

· · ·
{4}

· · ·
(c) State after firing root a second time (d) Stable configuration

Figure 4: Example of labeled chip-firing in a directed binary tree with 4 chips

Proof. Let S denote the set of chips on the root v of a subtree before this vertex starts firing. Let chip c1 be the
smallest labeled chip and chip c2 be the largest labeled chip in S. No matter which k-tuple of chips we select to
fire, chip c1 will always be sent to the left since it is the smallest labeled chip, and chip c2 will always be sent
to the right since it is the largest labeled chip. Therefore, for some vertex v, in the subtree with the root at v,
the bottom straight left descendant and bottom straight right descendant of vertex v will contain the smallest
and largest chips in that subtree, respectively.

3. Counting the Number of Stable Configurations

In [21], one unanswered question is the number of possible stable configurations when starting with 2` − 1
labeled chips in an undirected binary tree. We answer this question in the directed k-ary tree setting. We find
a bijection between the number of ways to sort the labeled chips to the k children and the collection of certain
lattice walks.

Let us have a vector space Rk, where ~ei is an ith elementary basis vector. We can consider ~ei as one possible
step on a walk. Also, let us denote by ~1 the vector in Rk with all entries being 1.

Definition 3.1. Define Ak,m to be the collection of all walks in Rk of length km starting at the origin, where

~ai is the i-th step. All walks end at point (m,m, . . . ,m), or equivalently
∑km

j=1 ~aj = m~1. In addition, the walks

have the ballot property, where for all 1 ≤ i ≤ km, the intermediate point on the walk (x1, x2, . . . , xk) =
∑i

j=1 ~aj
is such that x1 ≥ x2 ≥ ... ≥ xk.

Figure 5: Example of a walk of length 8 in R2 with the diagonal y = x. Each move is of unit length

ECA 5:2 (2025) Article #S2R16 5

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Example 3.1. A walk in A2,4. Figure 5 illustrates a walk of length 8 in R2. Each horizontal step is ~e1, and
each vertical step is ~e2.

We show that there is a bijective mapping between Ak,k`−1 and the ways of dispersing k` chips. The
cardinality of Ak,k`−1 is the k`−1th k-dimensional Catalan number, which is the result of applying the hook
length formula to count the number of k by n Standard Young Tableaux (see also [23] and entry A060854
of [22]). We denote such a number as Ck,m where k is the dimension and m is the index. Thus, the cardinality
of Ak,k`−1 is Ck,k`−1 .

Lemma 3.1. If we start with k` labeled chips at the root, then the number of ways to disperse k` chips to k
root’s children is exactly Ck,k`−1 .

Proof. We outline a procedure for constructing a walk given a dispersion of chips. If the chip labeled i ends in
the j-th leftmost child, then on the i-th step ~ai = ~ej .

We first observe that, indeed, this procedure maps from the possible ways of dispersing k` chips to k children
to walks in Ak,k`−1 . Suppose for the sake of contradiction that for some dispersion of chips, the procedure outputs

a walk (~a1,~a2, . . . ,~ak`) not in Ak,k`−1 . This means that either
∑k`

j=1 ~aj 6= k`−1~1 or for some i ∈ [k`] there is

some s ∈ [k− 1] such that for (x1, x2, . . . , xk) =
∑k`

m=1 ~am, for xs < xs+1. If the former holds, this implies that
in the dispersion, one child got more chips than the others, which cannot happen as each firing disperses one
chip to each of the k children. If the latter holds, this means that among the ith smallest chips, more of them
got sent to the (s+ 1)st child from the left than to the sth child from the left, contradicting our firing rules.

We show how to reconstruct the dispersion given a walk in Ak,k`−1 . Suppose the first appearance of ~ej
direction happens at yj . Then, during the first firing, we send chip yj to jth vertex from the left. As at each
moment the coordinates on the path decrease, we know that if j1 < j2, then the first step ~ej1 happened before
the first step in direction ~ej2 . Thus, yj1 < yj2 , and our firing assignment is legitimate. We similarly assign
consecutive firings.

Therefore, we have constructed a bijection between the dispersion of chips and Ak,k`−1 . Thus, the number
of ways of dispersing chips is Ck,k`−1 .

The closed form of the mth k-dimensional Catalan number Ck,m, attributed to Castelnuovo [8], is:

(km)! · 1! · 2! · · · · · (k − 1)!

m! · (m+ 1)! · · · · · (m+ k − 1)!
.

Notice that C2,m is equal to the mth Catalan number Cm = 1
m+1

(
2m
m

)
.

Recall from Section 1.1 that, since the root fires until it no longer can, we have k subtrees with k`−1 chips
at their roots v2, v3, . . . vk+1. Thus, we can find the number of stable configurations recursively. We do this in
Theorem 3.1. Let κ(`)k denote the number of stable configurations when starting with k` labeled chips at the
root of the directed k-ary tree.

Theorem 3.1. The number of stable configurations when starting with k` labeled chips at the root, κ(`)k, can
be calculated recursively as

κ(`)k = Ck,k`−1Ck1

k,k`−2C
k2

k,k`−3C
k3

k,k`−4 · · ·Ck`−2

k,k1 Ck`−1

k,k0 .

Proof. Once the root fires until it no longer can, we will have k subtrees with k`−1 chips at their roots
v2, v3, . . . , vk+1. Each subtree has κ(` − 1)k possible stable configurations. Thus, we have the recursive re-
lation of κ(`)k = Ck,k`−1κ(`− 1)kk. Let us prove the theorem statement by induction. When ` = 1, there is only
1 configuration which is equal to Ck,1 = 1. Let us assume that:

κ(`)k = Ck,k`−1Ck1

k,k`−2C
k2

k,k`−3C
k3

k,k`−4 · · ·Ck`−2

k,k1 Ck`−1

k,k0 ,

as the induction hypothesis.
By the recursive relationship and the induction hypothesis, we have

κ(`+ 1)k = Ck,k`

(
Ck,k`−1Ck1

k,k`−2C
k2

k,k`−3C
k3

k,k`−4 · · ·Ck`−2

k,k1 Ck`−1

k,k0

)k
= Ck,k`Ck1

k,k`−1C
k2

k,k`−2C
k3

k,k`−3 · · ·Ck`−1

k,k1 Ck`

k,k0 ,

which concludes the proof.

Example 3.2. For a directed 3-ary tree with 27 labeled chips initially at the root, there are

κ(3)3 = C3,9(C3,3)3(C3,1)9 = (
27! · 1! · 2!

9! · 10! · 11!
)(

9! · 1! · 2!

3! · 4! · 5!
)3 = 30, 695, 794, 169, 040

stable configurations.

ECA 5:2 (2025) Article #S2R16 6

Ryota Inagaki, Tanya Khovanova, and Austin Luo

4. Sequences that Can Appear in the Stable Configura-
tion

In this section, we discuss possible stable configurations resulting from labeled chip-firing on a k-ary tree starting
with k` labeled chips and introduce the stable configuration Zk(`). We denote the corresponding permutation
as Zk(`) too. We will show later this permutation the maximal number of inversions when viewed as a sequence
of chips in the (`+ 1)st row.

In addition to determining the positions where chips can end up, one can describe the possible stable
configurations by finding that certain permutation patterns can or cannot appear.

Definition 4.1. Given a permutation σ = σ1, σ2, . . . , σn ∈ Sn, we say that a subsequence w = {w1, w2, . . . , wn}
has a permutation pattern σ if there are indices i1 < i2 < · · · < in such that for all j ∈ {1, 2, . . . , n} of w, the
term wij is the σjth smallest term in the subsequence wi1 , wi2 , . . . , win−1 , win .

Example 4.1. A permutation pattern of subsequence 3, 5, 6, 9 is 1, 2, 3, 4.

The study of permutation patterns is a growing area of interest in enumerative combinatorics, as seen in [6].
Consider a chip-firing strategy F on chips 1 through k` at the root in a directed k-ary tree. Suppose we have

a different situation with k` chips, where the labels are distinct but might not start with one and might have
gaps. As we only care about the order of the labels, we can apply the same strategy F to the new situation. If
on chips 1 through k` the stable configuration corresponds to permutation σ, then in the latter case, the stable
configuration corresponds to a permutation with pattern σ.

Example 4.2. Consider a directed binary tree. If strategy F leads to the stable configuration 1, 3, 2, 4 on the
standard set of chips, then on chips 3, 5, 6, 9, the same strategy F leads to the stable configuration 3, 6, 5, 9.

Given a firing strategy F on kn labeled chips, we can define new strategies on mkn labeled chips, where we
divide the chips into m groups of kn chips each and apply F to each group independently. Here, we describe
one such special strategy, which we call a F -bundle. We divide the chips at the root into m groups of chips,
such that the jth group contains all chips of the form (im+ j), where 0 ≤ i < kn. After applying the strategy
F to the elements in each group, a vertex on layer n + 1 will get m consecutive chips. The vertex that would
have received i with strategy F in the chip-firing system starting with kn chips receives the chips (i− 1)m+ 1
through im.

Example 4.3. Suppose Fid is a firing strategy on one vertex of a k-ary tree with k chips. Consider a Fid-
bundling strategy at the root and at every other layer except the last. The stable configuration of such firing is
the identity permutation.

The bundling strategy corresponds to a notion of inflated permutation. These definitions were introduced
in [1] and used in [19].

Definition 4.2 (Inflation). Given a permutation τ of length n, the inflation of τ with a sequence of n permu-
tations γ1, . . . , γn is a permutation τ ′ of length |γ1|+ · · ·+ |γn| that consists of n blocks, such that the i-th block
is order-isomorphic to γi, and any restriction of τ ′ to one element in each block is order-isomorphic to τ . This
inflation is denoted as τ [γ1, . . . , γn].

Remark 4.1. Inflated permutations are similar to block-reductions in Appendix C.3 of [9], which precedes the
inflated permutations from [1].

We are interested in the case when all permutations γi are of the same length. In this case, the length of
the inflation is the length of τ times the length of each block γ.

Example 4.4. If τ = 231, γ1 = 21, γ2 = 12, and γ3 = 21, we get the inflation 231[21, 12, 21] = 43 56 21,
where we add spaces for clarity. Note how each element in the original permutation τ corresponds to a block of
elements in the inflation.

Proposition 4.1. Suppose we start with kn+m labeled chips and fire the F -bundle from the root, where F is
a strategy of firing kn chips that leads to the stable configuration with permutation τ . Then we fire strategy Fi

from ith leftmost vertex in the (n+ 1)st layer, where applying strategy Fi leads to the stable configuration with
permutation γi. Then, our overall strategy leads to the stable configuration with permutation, which is inflation
τ [γ1, . . . , γkn].

Proof. Consider collections of chips S` = {`km + 1, `km + 2,, (`+ 1)km} defined for ` ∈ {0, 1, ..., kn − 1}. In
performing the F -bundling, we treat each S` as a single chip ` and then apply strategy F to obtain state τ.

ECA 5:2 (2025) Article #S2R16 7

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Now replace each ` with {`km + 1, `km + 2,, (`+ 1)km}. Observe that if we restrict the state of the chips on
the tree to one chip per vertex, we obtain that the resulting sequence is order isomorphic to τ.

Now, consider for each i applying strategy Fi to the subtree rooted at the vertex that is the ith from the
left in layer n+ 1. This ensures that in the stable configuration of chips, the sequence of chips that are in the
subtree rooted by the ith vertex from the left in the (n + m + 1)st layer is order isomorphic to γi. Combining
with the previous paragraph, this implies that our stable configuration is inflation τ [γ1, γ2, ..., γkn].

There is a particular case of inflation that is often used. Rather than specifying the inflation of a permutation
τ with a sequence of |τ | different permutations γ1, . . . , γn, we have a special notation for the case when all of
these permutations are the same, i.e., γ1 = · · · = γn.

Definition 4.3 (Tensor product). Given two permutations τ ∈ Sn and γ ∈ Sm, their tensor product τ [γ] is a
permutation of length mn that consists of n blocks of length m, where each block is order-isomorphic to γ, and
the restriction of τ [γ] to one element in each block is order-isomorphic to τ .

Example 4.5. Consider τ = γ = 321, then τ [γ] = 987 654 321 is the decreasing permutation in S9. If k = 2,
and we start with 8 chips on a directed binary tree, there exists a strategy F that can get us a stable configuration
with a permutation that has a subsequence order isomorphic to 321, which is shown in Example 4.6. It follows
that if we perform the F -bundle on 64 chips and then repeat the F strategy on each subtree, we can get a
permutation order isomorphic to 987654321.

Now, we define another strategy that is similar to bundling but is opposite in some sense. Given a firing
strategy F on kn labeled chips, we call our new strategy on mkn labeled chips an F -unbundle. We divided the
chips at the root into m groups of chips, such that each group contains a set of chips from ikn + 1 to (i+ 1)kn,
for 0 ≤ i < m. After applying the strategy F at the root to each group of chips, on layer n, we get kn vertices
each with m chips. The vertex that would have received i with strategy F receives the chips i, i+ kn, i+ 2 · kn,
i+ 3 · kn, . . . , i+ (m− 1)kn.

Definition 4.4. Let Fid be a firing strategy on one vertex with k chips. Consider an Fid-unbundling strategy
at the root and at every other vertex except in the last layer. As a result, our stable configuration is a special
permutation, which is extreme in some senses. We denote this permutation as Zk(`) or Z when k and ` are
clear. Also, we sometimes refer to the corresponding stable configuration as Zk(`).

Example 4.6. Suppose we have 8 chips at the root of a binary tree. We use the Fid-unbundling strategy at
every node to get to the Z2(3) permutation. First, we fire pairs (1, 2), (3, 4), (5, 6), and (7, 8). Then, on the left
child of the root, we fire (1, 3) and (5, 7), and on the right child of the root, we fire (2, 4) and (6, 8). We obtain
in the end the permutation Z2(3): 1, 5, 3, 7, 2, 6, 4, 8. Figure 6 illustrates the complete firing process.

{1, 2, 3, 4, 5, 6, 7, 8}

· ·

{1, 3, 5, 7}

· · · · · · · · · · · ·

{2, 4, 6, 8}

· · · · · · · · · · · ·

(a) Initial configuration with 8 chips (b) State after firing pairs: (1, 2), (3, 4), (5, 6), (7, 8)

{1, 5}

· · · · · ·

{3, 7}

· · · · · ·

{2, 6}

· · · · · ·

{4, 8}

· · · · · ·
{1}

· · ·
{5}

· · ·
{3}

· · ·
{7}

· · ·
{2}

· · ·
{6}

· · ·
{4}

· · ·
{8}

· · ·

(c) State after firing pairs: (1, 3), (5, 7), (2, 4), (6, 8) (d) Stable configuration

Figure 6: Firing process to obtain the Z2(3) permutation

ECA 5:2 (2025) Article #S2R16 8

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Theorem 4.1. For any permutation pattern P of length kn, one can construct P as a permutation pattern of
a subsequence in a stable configuration through the firing of k2n chips starting at the root.

Proof. Consider permutation P and strategy F for obtaining the identity permutation in the (n + 1)st layer
when starting with kn labeled chip. Now, when we have k2n chips, we apply F -unbundling at the root. Thus,
each vertex on layer n+1 has chips c, c+kn, c+kn+1, . . . , c+k2n−kn, where c is the chip that the vertex on layer
kn would have received when applying strategy F . We now apply any strategy to finish the firings. To obtain
permutation pattern P = p1p2 . . . pkn from the resulting stable configuration, we take chips i+ (pi−1)kn for all
i ∈ [1, kn]. Since 1 + (p1− 1)kn, 2 + (p2− 1)kn, . . . , kn + (pkn − 1)kn is a subsequence of the stable configuration
and since 1 + (p1 − 1)kn, 2 + (p2 − 1)kn, . . . , kn + (pkn − 1)kn has the same relative order as p1, p2, . . . , pkn , we
obtain that the permutation pattern P = p1p2 . . . pkn appears in the stable configuration.

5. The Digit-Reversal Permutation

Since the order in which chips are fired at each vertex does not matter, we need a clever strategy to create a
permutation with a lot of inversions at the stable configuration. As we know, we can get an identity permutation
at the stable configuration by using Fid-bundling at each vertex. However, the stable configuration cannot have
chips in decreasing order, as, for example, the first chip is always labeled one. In this section, we study the
digit-reversal permutation and show that it describes the stable configuration with the largest possible number
of inversions.

We define the digit-reversal permutation R′k(`) :

Definition 5.1. A radix-k digit-reversal permutation R′k(`) is a permutation of k` numbers from 0 to k` − 1.
We represent each integer from 0 to k`−1 in base k and prepend it with zeros, so each number becomes a string
of length `. After that, we map each number to the number whose representation has the same digits in the
reversed order [11]. We define Rk(`) to denote the permutation of 1, 2, . . . , k` where we add 1 to each term in
R′k(`).

For k = 2, the digit-reversal permutation is often called a bit-reversal permutation. It is the same as the
sequence consisting of the 2`th to (2`+1 − 1)st element of sequence A030109 in the OEIS [22].

Example 5.1. We compute the bit-reversal permutation R′2(3) of length 23. First, we begin with 0, 1, 2, ..., 23−1.
We write the numbers in 000, 001, 010, 011, 100, 101, 110, 111. Then we reverse the bits to obtain 000, 100, 010, 110,
001, 101, 011, 111, which in decimal are 0, 4, 2, 6, 1, 5, 3, 7. Therefore, we obtain R′2(3) to be 0, 4, 2, 6, 1, 5, 3, 7. By
adding 1 to each term in R′2(3), we obtain that permutation R2(3) is 1, 5, 3, 7, 2, 6, 4, 8. We observe that this
is the same permutation as Z2(3). We show that this is not a coincidence in the next section.

We now prove that Rk(`) is an attainable stable configuration of k` chips on a k-ary directed tree. Recall
from Definition 4.4 that Zk(`) is the permutation representing the stable configuration resulting from the Fid-
unbundling strategy at the root and at every other vertex except in the last layer. We show that Zk(`) is
Rk(`).

Proposition 5.1. The permutation Zk(`) is Rk(`), i.e., the permutation of 1, 2, . . . , k` resulting from adding 1
to the radix-k digit-reversal permutation R′k(`) of k` elements 0, 1, 2, . . . , k` − 1.

Proof. Suppose we have chips labeled 0, 1, 2, . . . , k` − 1 at the root. After performing Fid-unbundling at the
root, the ith child will receive the chips with labels that end in i − 1 in base-k. Similarly, the Fid-unbundling
at the next layer will sort the chips by the second to the last digit. In the end, the stable configuration will
correspond to the radix-k digit-reversal permutation. Increasing the chips by 1 concludes the proof.

Remark 5.1. The algorithm used to create stable configuration Zk(`) illustrates the generalization of the re-
cursive algorithm from Section 3 of [16] outputting the digit-reversal permutation. According to that section,
performing the bit-reversal permutation on a list can be done recursively first by splitting the list into two halves
by “uninterleaving,” which is analogous to unbundling in our context, and applying the procedure to the two
halves and then pasting together the resulting lists.

6. Number of Inversions

In this section, we look at the number of inversions that is possible in the stable configuration. Each individual
chip-firing preserves the order. This makes it interesting to study when the order reverses. In particular, we
are interested in the largest number of inversions possible in the stable configuration.

We now show that this permutation Zk(`) = Rk(`) has the largest possible number of inversions.

ECA 5:2 (2025) Article #S2R16 9

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Theorem 6.1. If we start with k` labeled chips at the root of a k-art tree, the permutation Zk(`) has the
maximum possible number of inversions among all permutations corresponding to stable configurations. This
number of inversions is

k2` − `k`+1 + (`− 1)k`

4
.

Proof. We use induction on `. When ` = 0, all stable configurations are the same; thus, Z supplies the maximum
number of inversions. Moreover, Zk(0) = 0, which matches the expression we are trying to prove. We start
with the first statement.

Suppose for the sake of induction that for any whole number `, the configuration Zk(`−1), when given k`−1

labeled chips at the root, gives us a stable configuration with the maximum possible number of inversions. We
now prove the inductive step.

Consider any way of dispersing the k` chips on the root vertex to the k children. Let set Sm denote the set
of chips going to the mth leftmost child. Let Lm be the list of chips in Sm but in increasing order. Let w be
the string resulting from concatenating lists L1, L2, ..., Lk in the given order. We claim that for each m ∈ [k]
and m′ > m, the ith chip in set Lm is part of at most i− 1 inversions in the string w that consist of a chip in
Lm and a chip in Lm′ . If this were not the case, we could denote the value of the ith chip in set Lm as k0 + 1,
and it would follow that there are more chips in Sm′ ∩ [k0] than there are in Sm ∩ [k0]. This cannot happen as
each chip in Sm′ ∩ [k0] was dispersed from the root with a smaller chip sent to the mth vertex. Furthermore,
we observe that, since w is a concatenation of lists L1, L2, ..., Lk and each Lj is a list of increasing chips, any
inversion in w consists of a chip in Lm and a chip in Lm′ for some m,m′ ∈ [k] such that m 6= m′.

On the other hand, the unbundling strategy at the root ensures that for each m,m′ ∈ [k] and i ∈ [k`−1] such
that m′ > m, the ith largest chip in Lm is part of exactly i−1 inversions consisting of a chip in Lm and a chip in
Lm′ . To see this, we observe that in this setup for any j ∈ [k], Sj = {j, j+k, j+2k, ..., j+k`−1}. We obtain that
the ith largest chip in Lm is (i− 1)k+m. We obtain that (i− 1)k+m is larger than m′, k+m′, ..., (i− 2)k+m′

in Lm which also appear right of (i− 1)k + j in w.
Doing some computation we find that for any m,m′ ∈ [k] such that m′ > m, the total number of inversions

involving a chip in Lm and one in Lm′ is
∑k`−1

i=1 (i− 1) = (k`−1)k`−1

2 . Now multiply that by the
(
k
2

)
, the number

of pairs m,m′ ∈ [k] such that m′ > m, we obtain that w has(
k

2

)
(k` − 1)k`−1

2
=
k2` − k2`−1 − k`+1 + k`

4

inversions.
By the inductive hypothesis, we know that when the firing procedure above, corresponding to the stable

configuration Zk−1(`), gets applied to the tree rooted at the mth child from the left, we will get a stable
configuration that has the largest number of inversions when viewed as a permutation of Lm with [k`−1] chips.
By the inductive hypothesis, each subtree generates

k2`−2 − (`− 1)k` + (`− 2)k`−1

4

inversions. Thus, the total maximum number of inversions is

k · k
2`−2 − (`− 1)k` + (`− 2)k`−1

4
+
k2` − k2`−1 − k`+1 + k`

4
.

After collecting the like terms, we get the desired result.

Example 6.1. In Example 4.6 we saw that Z2(3) permutation is 15372648. This permutation has 43−1 − (3 +
1)23−2 = 8 inversions.

Remark 6.1. When k = 2 (i.e., we construct Z from 2` chips at the root of a binary tree) we obtain that the
maximum number of inversions is 4`−1 − (` + 1)2`−2, which is the same sequence as A100575 in OEIS [22],
which describes half of the number of permutations of 1, 2, ..., n+ 1 with two maxima and starts as: 0, 1, 8, 44,
208, 912, 3840, and 15808.

7. The Longest Decreasing Subsequence in Zk(`)

As each individual firing preserves the order, it is less surprising to get long increasing subsequences in the
stable configuration than long decreasing ones. Now, we study the longest decreasing subsequence in Zk(`). For
this chapter we will use Z ′k(`), the permutation Zk(`) but with 1 subtracted from each term. In other words,
since Zk(`) = Rk(`), we have Z ′k(`) = R′k(`).

ECA 5:2 (2025) Article #S2R16 10

Ryota Inagaki, Tanya Khovanova, and Austin Luo

We start by discussing palindromic subsequences, which will be useful later. Consider a sequence of k-ary
strings, each consisting of ` digits. We call such sequence palindromic if the ith term from the beginning is the
reversal of the ith term from the end.

Lemma 7.1. Consider a palindromic sequence of k-ary strings each with ` digits. If the values of terms in this
sequence are decreasing, then the values of this sequence form a subsequence of Z ′k(`). If there is a subsequence
of Z ′k(`) that is palindromic when converted to k-ary strings, each with ` digits, then it is decreasing.

Proof. Suppose our k-ary sequence of strings has decreasing values. If we reverse digits in every term, from
the fact that our sequence is palindromic, we get our sequence in reverse order. Thus, digit-reversal makes the
values in our sequence increase; thus, from Proposition 5.1, it is a subsequence of Z ′k(`). The second statement
is proved similarly. As previously observed, the sequence is palindromic; reversing the digits in every term yields
the sequence in reversing order. Since the original sequence was in Z ′k(`), in which elements are in reflected
lexicographic order, the transformed sequence is from greatest to least lexicographic order. Because of this,
and since the transformed sequence is the sequence in reversed order, the original sequence is increasing in
lexicographic order.

Lemma 7.1 allows us to build decreasing subsequences in Z ′k(`). The sequences we consider are subsequences
corresponding to stable configurations on k-ary trees when we fire k` chips from the root. Given k and `, we
call a sequence of natural numbers palindromic, if after representing each number as a k-ary string of length `,
we get a palindromic sequence of strings.

Proposition 7.1. Given a decreasing palindromic subsequence in Z ′k(`) of length d with no zero terms, there
exists a decreasing, palindromic subsequence in Z ′k(`+ 2) of length kd+ k − 1 with no zero terms.

Proof. We prove this by construction. Suppose we have a decreasing palindromic subsequence (b1, b2, ..., bd) of
Zk(`)′ of length d whose terms, when written as length-` k-ary strings have not all the same digits. We build a
new sequence b′1, b

′
2, b
′
3, . . . , b

′
kd+k−1 of k-ary strings representing nonnegative integers in the following manner.

First for i ∈ {1, 2, ..., d} we set b′i = (k − 1)bi0, i.e. the result of prepending a k − 1 and appending a 0 to
the string representing bi. We then set b′d+1 to be the string with k − 1 as a prefix, then ` consecutive zeros,
and then 1 as a suffix. Then, for i ∈ {d + 2, d + 3, . . . , 2d + 1} set b′i = (k − 2)bi−d−11, followed by a string
that starts with (k − 2) then all zeros, then 1. We continue in this manner, for each j ∈ {k − 1, k − 2, ..., 1}
building groups of k-ary strings so that each starts with j and ends with k − j − 1. With the exception of the
case j = k − 1, we have d + 1 elements in the group; the first d elements in the group have bis in the middle,
and the last element in the group is the string starting with j + 1, has all zeros in the middle, and ends with
k − j − 2. When j = 0, there are only d elements in the group: 0b1(k − 1), 0b2(k − 1), 0b3(k − 1), ..., 0bd(k − 1).

We observe that the new sequence is palindromic. Consider b′(d+1)(j−1)+j′ which by our construction is the

j′th element in the jth group. We want to show that b′(d+1)(j−1)+j′ = b′kd+k−(d+1)(j−1)−j′ . First, we address the

case, j′ 6= d + 1. This means b′(d+1)(j−1)+j′ = (k − j)bj′(j − 1). Recalling that b1, b2, ..., bj′ is palindromic, we

obtain that the reversal of digits in bj′ is bd−j′ and hence the reversal of digits in b′i is (j − 1)bd−j′(k − j). This
is exactly the (d− j′)th element of the (k − j + 1)st group, i.e., b′(d+1)(k−j+1)+d−j′ = b′kd+k−(d+1)(j−1)−j′ . Now,

we address the case j′ = d+1. Note that for any a ∈ {1, 2, ..., k−1}, we have b′(d+1)(a−1)+d+1 = (k−a)00...0(a),

where there are ` zeros. If we reverse the digits, we obtain a00..0(k − a) where there are again ` zeros:
a00...0(k − a) = b′(d+1)(k−a−1)+d+1 = b′kd+k−((d+1)(a−1)+d+1).

We now want to show that the new sequence is decreasing. Since the sequence {bi} is decreasing so is the
sequence {abib}, where a and b are fixed digits. Thus, each such group is decreasing. We continue each group
with the same a and b and all zeros in the middle. This continuation is decreasing, as all elements in {bi} are
positive. What is left to show is that the last element of one group is greater than the first element of the next.
But this is true as the first digit decreases between the groups.

By construction, the new sequence {b′i} is palindromic and decreasing and does not contain zero terms. By
Lemma 7.1, its values form a subsequence in Z ′k(`+ 2). Its length is kd+ k− 1, which concludes the proof.

Example 7.1. Consider Z ′2(2) = R′2(2) = 0, 2, 1, 3. It contains a decreasing subsequence 2, 1. Writing the
result in binary and pretending with zeros when necessary, we get the following two strings: 10 and 01. Using
the construction described in Proposition 7.1, we get the following sequence of strings: 1100, 1010, 0110, 0101,
0011. They correspond to numbers 12, 10, 6, 5, and 3. They form a decreasing subsequence in Z ′2(4) = 0, 8, 4,
12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15.

Now we are ready for the theorem giving the exact length of the longest decreasing subsequence in Zk(`).

Theorem 7.1. For even ` ≥ 1, the longest decreasing subsequence in Zk(`) has length (k + 1)k`/2−1 − 1. For
odd ` ≥ 1, the longest decreasing subsequence has length 2k(`−1)/2 − 1.

ECA 5:2 (2025) Article #S2R16 11

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Proof. Suppose the longest decreasing subsequence in Zk(`) has length d. We show that the longest decreasing
subsequence in Zk(` + 2) has a length not more than kd + k − 1. We prove this for the shifted case Z ′, which
is equivalent.

Consider the longest decreasing subsequence in Z ′k(` + 2). We represent each term as a k-ary string of
length `+ 2. Now divide the subsequence into k subsequences that each start with the same digit. Consider a
substring that starts with j > 0. As this substring is a part of Z ′, which is order reversal, the last digits are in
non-decreasing order. If our subsequence is decreasing, it is still decreasing after removing the first and the last
digits. Therefore, its length is not more than d + 1. This is because the last term might be zero, and the rest
is a positive decreasing subsequence with respect to digit reversal. Thus, the rest has to belong to Zk(`) and
cannot be longer than d. By similar reasoning, the last subsequence that starts with 0 has a length not more
than d. Summing up, we get the result. We see that the longest substring follows the same recursion as in our
construction in Proposition 7.1.

Now, we derive the formula by induction. We start with ` odd. For the base case, we observe that for ` = 1,
the length of the longest decreasing subsequence in Zk(1) is 1. Our formula gives us 2k(1−1)/2 − 1 = 1: the
same value. Thus, we have a base for induction.

Assume the theorem is true for odd ` = i, that is, the length of the longest decreasing subsequence in Z ′k(i)
is 2k(i−1)/2 − 1. Then, by the recursion, we can build the corresponding decreasing sequence in Z ′k(i+ 2) of
length k(2k(i−1)/2 − 1) + k − 1 = 2k(i+1)/2 − 1, concluding the induction.

Now, we move to even numbers. Suppose ` = 2, then the corresponding Z ′k(`) contains a decreasing
subsequence (k − 1)0, (k − 2)1, (k − 3)2, . . ., 0(k − 1). The length of this sequence is k. Also, permutation
Z ′ consists of k increasing blocks. Hence, the longest subsequence cannot have a length of more than k. Our
formula gives us (k + 1)k2/2−1 − 1 = k: the same value. Thus, we have a base for induction.

Assume the theorem is true for even ` = i, that is, there exists a decreasing subsequence in Z ′k(i) of
length (k + 1)ki/2 − 1. Then, by the recursion, we can build a decreasing sequence in Z ′k(i+ 2) of length
k(k + 1)(ki/2 − 1) + k − 1 = (k + 1)(k(i+2)/2 − k) + (k − 1) = (k + 1)k(i+2)/2 − 1, concluding the induction.

Example 7.2. The lengths of longest decreasing subsequences in Z2(`) starting from Z2(1) are respectively

1, 2, 3, 5, 7, 11, 15, 23, 31, 47,

This sequence is A052955 in [22]. Also, the sequence of lengths of longest decreasing subsequences in Z3(`)
starting from Z3(1) is

1, 3, 5, 11, 17, 35, 53, 107, 161, 323, . . .

which is sequence A060647 in [22].

8. Decreasing Sequences in Stable Configurations

In this section, we will upper and lower bound the number of terms in the longest possible decreasing sequence.
We begin with an upper bound on the number of configurations of the longest possible decreasing subsequence

of a stable configuration, which almost immediately follows from Theorem 7.1

Proposition 8.1. Given k` labeled chips at the root of a directed k-ary tree, the longest possible decreasing
subsequence in a resulting stable configuration has a length of at least (k+1)k`/2−1−1 if ` is even and 2k(`−1)/2−1
if ` is odd.

Proof. By Theorem 7.1, we know that the longest decreasing sequence in Zk(`) is (k + 1)k`/2 − 1 if ` is even
and 2k(`−1)/2 − 1 if ` is odd. Since Zk(`) is by definition a possible stable configuration of chips resulting from
stabilizing k` labeled chips initially at the root of a directed k-ary tree, the result follows.

We now prove an upper bound on the number of terms in the longest possible decreasing subsequence of a
stable configuration resulting from stabilizing k` labeled chips starting at the root of a k-ary tree.

Let us denote as Dk(`) the length of the longest decreasing permutation that can occur in a stable configu-
ration on a k-ary tree when we start with k` chips.

The fractal structure of chip-firing allows us to bound the longest decreasing subsequences if we know the
value of Dk(`) for small `.

Proposition 8.2. If we start with k` labeled chips at the root of a k-ary tree, then the longest strictly decreasing
permutation pattern in the stable configuration is at most of length Dk(n)k`−n for n ≤ `. In other words,

Dk(`) ≤ Dk(n)k`−n.

ECA 5:2 (2025) Article #S2R16 12

Ryota Inagaki, Tanya Khovanova, and Austin Luo

Proof. If we take all subtrees with roots on layer ` − n + 1, we end up with k`−n subtrees, each containing
kn chips. Each subtree can only have in its stable configuration, at most, a strictly decreasing permutation
pattern of length Dk(n). Therefore, we can have, at most, a strictly decreasing permutation pattern of length
Dk(n)k`−n.

Thus, calculating Dk(`) for small ` will provide a bound for any `.

Example 8.1. We have Dk(1) = 1 as the stable configuration is on the second layer, which is in increasing
order. We have Dk(2) ≤ k as the stable configuration consists of k increasing blocks. On the other hand, Zk(2)
contains a subsequence k(k − 1) + 1, k(k − 2) + 2, . . . , k, which has length k. Thus, Dk(2) = k.

We also calculated that D2(3) = 3 and D2(4) = 6.

The examples and the Proposition 8.2 imply the following corollary.

Corollary 8.1. For k ≥ 2, if we start with k` chips on the root of a k-ary tree, the longest possible decreasing
subsequence of the stable configuration is at most k`−1:

Dk(`) ≤ k`−1.

In addition, for ` ≥ 4, if we start with 2` chips on the root of a binary tree, the longest possible decreasing
subsequence of the stable configuration is at most 6 · 2`−4.

Proof. By Proposition 8.2, plugging in n = 1 we obtain that Dk(`) ≤ Dk(1)k`−1 = 1 · k`−1 = k`−1. Plugging in
k = 2 and n = 4, we obtain that D2(`) ≤ D2(4)2`−4 = 6 · 2`−4.

In sum, Proposition 8.1 and Corollary 8.1 tell us that the longest decreasing subsequence in a stable config-
uration resulting from stabilizing k` labeled chips on a k-ary directed tree has length polynomial with respects
to k`.

We end this paper with a conjecture.

Conjecture 8.1. Consider a directed k-ary tree with k` labeled chips initially at the root. The longest decreasing
subsequences in a resulting stable configuration do not asymptotically exceed in length the longest decreasing
subsequences of Zk(`).

We suspect this conjecture is true since permutations, and hence stable configurations of labeled chips, with
long decreasing subsequences, have a large number of inversions and since, by Theorem 6.1, the permutation
Zk(`) has the largest possible number of inversions. In addition, our calculations for Dk(1), Dk(2), and D2(3)
have the same lengths as the longest decreasing subsequences of Zk(1), Zk(2), and Z2(3) and Z2(4) = 6, which
is one more than the length of the longest decreasing subsequence of Z2(4).

Acknowledgements

We thank Professor Alexander Postnikov for suggesting the topic of labeled chip-firing on directed trees and
helping formulate the proposal for this research problem and for helpful discussions. This project started during
the Research Science Institute (RSI) program. During RSI, many people helped, and we thank Professors David
Jerison and Jonathan Bloom for overseeing the progress of the research problem. The authors appreciate the
RSI students and staff for creating a welcoming working environment.

We wish to thank the anonymous reviewers for their careful reading and helpful comments.
The first and second authors are financially supported by the MIT Department of Mathematics. The third

author was sponsored by the RBC Foundation USA.
All figures in this paper were generated using TikZ.

References

[1] M. H. Albert and M. D. Atkinson, Simple permutations and pattern restricted permutations, Discrete Math
300(1-3) (2005), 1–15.

[2] R. Anderson, L. Lovász, P. Shor, J. Spencer, E. Tardos, and S. Winograd, Disks, balls, and walls: Analysis
of a combinatorial game, Am. Math. Monthly 96(6) (1989), 481–493.

[3] P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev.
Lett. 59 (1987), 381–384.

[4] A. Björner and L. Lovász, Chip-firing games on directed graphs, J. Algebraic Combin. 1(4) (1992), 305–328.

ECA 5:2 (2025) Article #S2R16 13

Ryota Inagaki, Tanya Khovanova, and Austin Luo

[5] A. Björner, L. Lovász, and P. W. Shor, Chip-firing games on graphs, European J. Combin. 12(4) (1991),
283–291.

[6] M. Bóna, Combinatorics of permutations, Discrete Mathematics and its Applications (Boca Raton), CRC
Press, Boca Raton, FL, third edition, 2022. With a foreword by Richard Stanley.

[7] A. Bu, Y. Choi, and M. Xu, On the limited increment parallel chip-firing game, Discrete Math. 346(1)
(2023), Paper No. 113183.

[8] G. Castelnuovo, Numero degli spazi che segano più rette in uno spazio ad n dimensioni, Atti Accad. Naz.
Lincei Rend. Lincei Mat. Appl. s.IV, 5 (1889), 71–78.

[9] N. R. Constable, D. Z. Freedman, M. Headrick, S. Minwalla, L.Motl, A. Postnikov, and W. Skiba, pp-wave
string interactions from perturbative Yang-Mills theory, J. High Energy Phys. (2002).

[10] D. Dhar, The Abelian sandpile and related models, Phys. A 263(1-4) (1999), 4–25.

[11] D. M. W. Evans, An improved digit-reversal permutation algorithm for the fast Fourier and Hartley trans-
forms, IEEE Trans. Acoust. Speech Signal Process. 35(8) (1987), 1120–1125.

[12] A. Gabrielov, Abelian avalanches and Tutte polynomials, Phys. A 195(1-2) (1993), 253–274.

[13] A. Gabrielov, Asymmetric abelian avalanches and sandpiles, Preprint 93–65, MSI, Cornell Univ., 1993.

[14] J. Guzmán and C. Klivans, Chip-firing and energy minimization on M-matrices, J. Combin. Theory Ser.
A 132 (2015), 14–31.

[15] J. Guzmán and C. Klivans, Chip firing on general invertible matrices, SIAM J. Discrete Math. 30(2) (2016),
1115–1127.

[16] R. Hinze, Perfect trees and bit-reversal permutations, J. Funct. Programming 10(3) (2000), 305–317.

[17] S. Hopkins, T. McConville, and J. Propp, Sorting via chip-firing, Electron. J. Combin. 24(3) (2017), #P
3.13.

[18] R. Inagaki, T. Khovanova, and A. Luo, On chip-firing on undirected binary trees, arXiv:2410.00039, 2024.

[19] T. Khovanova and E. Zhang, Limit densities of patterns in permutation inflations, Electron. J. Combin.
28(1) (2021), #P1.24.

[20] C. J. Klivans, The Mathematics of Chip-Firing, Chapman and Hall/CRC, 2018.

[21] G. Musiker and S. Nguyen, Labeled chip-firing on binary trees with 2n− 1 chips, Ann. Comb. 28(4) (2024),
1167–1197.

[22] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2024. Available at https://oeis.
org.

[23] S. L. Snover and S. F. Troyer, A four-dimensional Catalan formula, In Proceedings of the Nineteenth Man-
itoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989), Volume 75, (1990),
123–126.

[24] J. Spencer, Balancing vectors in the max norm, Combinatorica 6(1) (1986), 55–65.

ECA 5:2 (2025) Article #S2R16 14

