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1. Introduction

In recent preprints [3, 4], Cigler considered Hankel determinants

DK,M (N)
def
= det (CK,i+j+M )N−1

i,j=0 , (1)

for M ∈ Z and K,N ∈ N, K ≥ 1, where the entries are convolution powers of Catalan numbers for p ∈ N

CK,p
def
=

(

2p+K − 1

p

)

−

(

2p+K − 1

p− 1

)

=
K

p+K

(

2p+K − 1

p

)

=
K

2p+K

(

2p+K

p

)

,

and CK,p = 0 for p ∈ Z with p < 0.
Cigler presented the following conjecture [4, Conjecture 1, equations (7) and (8)] regarding these determi-

nants, which we formulate as a theorem since we will give a (bijective) proof for it. This is justified even more,
since shortly after this proof was presented, Cigler [6] provided an elegant (and much shorter) proof, based on
earlier results of Cigler [5, Proposition 2.5] and Andrews and Wimp [2].

Theorem 1.1 (Cigler’s Conjecture). Let m, k ∈ N, with m, k > 0. Then for K = 2k we have the even identities

D2k,1−k−m (0) = 1 (true by definition),

D2k,1−k−m (N) = 0 for N = 1, 2, . . . ,m+ k − 1, (2)

and for all n ∈ N

D2k,1−k−m (n+m+ k) = (−1)(
m+k

2 )D2k,1−k+m (n) (3)

Moreover, for K = 2k − 1 we have the odd identities

D2k−1,2−k−m (0) = 1 (true by definition),

D2k−1,2−k−m (N) = 0 for N = 1, 2, . . . ,m+ k − 2, (4)

and for all n ∈ N

D2k−1,2−k−m (n+m+ k − 1) = (−1)(
m+k−1

2 )D2k−1,1−k+m (n) (5)
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We shall prove this by interpreting the determinants as generating functions of tuples of lattice paths,
for which we apply the well–known Lindström–Gessel–Viennot–method, i.e., we construct a sign–reversing
involution for both sides of the identities: for the set of “survivors” of this involution on the left–hand side of
the identities we shall construct a second sign–reversing involution, and we shall show that all lattice paths that
“survive” also this second involution have a very special shape, from which one immediately sees a bijective
correspondence with the “survivors” of the right–hand side of the identities. But while this final argument is
immediately obvious from a picture, the road to get there is unfortunately long: we will therefore try to explain
it through numerous pictures.

In order to keep things as brief as possible, from now on we shall refer to

• the determinants to the left and to the right in identities (2), (3), (4) or (5),

• and/or their parameters K,M,N , which depend on k, m, n, and on the parity p (even or odd) of the
identity

K = K (k,m, n, p) ,M =M (k,m, n, p) , N = N (k,m, n, p)

• and/or the lattice path interpretation for these determinants and their parameters (yet to be explained)

simply as

• right–hand side (which we abbreviate as rhs)

• and left–hand side (which we abbreviate as lhs),

respectively. Moreover, we shall refer to relations that are “geometrically obvious” in the illustrations we provide
(like “above”, “between”, or “to the left”) in simple terms (instead of stating everything with coordinates or
equations).

In section 2, we briefly recall basic concepts, and in section 3 we present the bijective proof of Cigler’s
Conjecture.

2. Preliminary considerations

We recall basic facts and make some elementary observations.

2.1 Binomial coefficients and lattice paths

If we restrict the binomial coefficient
(

2m+k−1
m

)

to the case m, 2m+ k − 1 ∈ N, then we may interpret it as the
number of lattice paths in the integer lattice Z

2 consisting of

• horizontal steps to the right, i.e., from (x, y) to (x+ 1, y)

• or vertical steps upwards, i.e., from (x, y) to (x, y + 1),

which start at (a−m, a−m− k + 1) ∈ Z
2 and end at (a, a) ∈ Z

2 for some a ∈ Z, see the following picture
illustrating such path for a = 0, m = 3 and k = 2:

If we want to count only paths that do never touch the forbidden line y = x− k (this is the dashed line in the
above picture), then we must subtract

• from the number
(

2m+k−1
m

)

of all lattice paths

• the number of all lattice paths which do touch the forbidden line,

and by the well–known reflection principle [1] we have that the latter equals
(

2m+k−1
m−1

)

, see the following picture
where the initial segment of the path up to the first point of intersection (indicated by a small square in the
picture) with the forbidden line is reflected on the forbidden line:
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2.2 Determinants interpreted as generating functions

So, we may interpret the entry

CK,i+j+M =

(

2 (i+ j +M) +K − 1

i+ j +M

)

−

(

2 (i+ j +M) +K − 1

i+ j +M − 1

)

of the determinant (1) as the number of lattice paths which

• start at initial point Ai = (−i−M,−i−M −K + 1)

• and end at terminal point Bj = (j, j)

• and do not touch the forbidden line y = x−K,

as long as 2 (i+ j +M) + K − 1 ≥ 0 (otherwise, the number of such lattice paths clearly is zero, while the
binomial coefficients might be nonzero∗).

By assigning constant weight 1 to each single lattice path, we may interpret the number CK,i+j+M as the
generating function of the set of all such lattice paths.

Denoting the permutation group on {0, 1, . . . , N − 1} by SN , the determinant DK,M (N)

det (CK,i+j+M )
N−1
i,j=0 =

∑

π∈SN

sgn (π) ·
N−1
∏

i=0

CK,i+π(i)+M

may be viewed as the generating function of the set P of all N–tuples t of lattice paths

• from initial points Ai

• to terminal points Bπ(i),

for some π (t) = π ∈ SN which we call the permutation of t, where the weight of such N–tuple t equals
sgn (π (t)):

det (CK,i+j+M )
N−1
i,j=0 =

∑

t∈P

sgn (π (t)) . (6)

The following pictures illustrate this idea by two triples of lattice paths for K =M = N = 3 and π = (1, 0, 2)
(in one–line–notation):

0

0

1

1

2

2

0

0

1

1

2

2

∗For instance, if M = −1, K = 1 and i = j = 0, then
(2(i+j+M)+K−1

i+j

)

=
(

−2
0

)

= 1.
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Note that in the right picture (where different colours for the paths are used just to make their course more
visible), there are two points of intersections of lattice paths, indicated in the picture by small squares: if some
N–tuple of lattice paths has such points of intersections, then it is called intersecting, otherwise it is called
nonintersecting (so the left picture above shows a nonintersecting triple of lattice paths).

In the following considerations, we will also encounter initial and terminal points A′
i, B

′
j in other positions,

and we will sloppily refer to any such configuration of initial and terminal points as situation. If we know in
some situation that initial point A′

i is (or must be) connected with a terminal point B′
π(i) by a lattice path, we

call π the permutation corresponding to this situation. (So π = (1, 0, 2) is the permutation corresponding to the
situation shown in the above pictures.)

2.3 The Lindström–Gessel–Viennot method

The well–known Lindström–Gessel–Viennot method [7,8] constructs an involution ϕ on the set P of all N–tuples
of lattice paths, i.e.,

ϕ : P → P is bijective and ϕ−1 = ϕ,

which is sign–reversing, i.e.,
ϕ (t) 6= t =⇒ sgn (ϕ (t)) = − sgn (t) .

Clearly, such sign–reversing involution ϕ results in a cancellation of summands in (6), the only “survivors” of
which are the fixed points of ϕ (i.e., N–tuples t of lattice paths with ϕ (t) = t).

Consider the lexicographic order on Z
2:

(r, s) ≻ (u, v)
def
⇐⇒ r > u or (r = u and s > v) .

The Lindström–Gessel–Viennot–involution ϕ is defined as follows: if t is a nonintersecting N–tuple of lattice
paths, then ϕ (t) = t. Otherwise choose the maximal point of intersection P in lexicographic order (in the right
picture above, this is the point with coordinates (−3,−2)): Assuming that (precisely) the two paths ending in
Bj1 and Bj2 meet in P , we obtain another (again intersecting) N–tuple t′ of lattice paths with the opposite sign
by exchanging the terminal path segments from P up to Bj1 and Bj2 , respectively; and we set ϕ (t) = t′.

For instance, after applying this involution to the situation of the right picture above, we obtain the following
picture for π′ = (0, 1, 2) (in one–line–notation, again):

0

0

1

1

2

2

Clearly, the fixed points of this involution are precisely the nonintersecting N–tuples of lattice paths. For
the rest of this paper, we shall only consider such N–tuples of nonintersecting lattice paths, which we call
survivors (since they “survive” the cancellation implied by the Lindström–Gessel–Viennot–involution): note
that the generating of these survivors equals the determinant DK,M (N) in (6), where the sign sgn (o) of a
survivor o connecting initial points Ai to terminal points Bπ(i) is defined as the sign sgn (π) of the permutation
π.

In the typical application of the Lindström–Gessel–Viennot method, there is only one permutation π (typi-
cally: the identity) for which a tuple of nonintersecting paths is possible: note that this is not necessarily the
case in the situation we are considering here, see again the above pictures.

2.4 Enforced segments for survivors

Observe that the nonintersecting lattice paths starting in Ai, i = 0, 1, . . . , N−1, must not start with a horizontal
step to the right (since they must not touch the forbidden line): so each lattice path starts with an enforced

ECA 5:3 (2025) Article #S2R17 4
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initial segment of vertical upward steps (which might be empty in special cases), and since the lattice paths are
nonintersecting, the length of the enforced initial segment starting in Ai+1 exceeds the length of the enforced
initial segment starting in Ai by two, except in cases where this enforced initial segment runs into one of the
endpoints Bj , where it is “stopped” immediately (so if some initial point coincides with some terminal point,
the enforced initial segment starting there has length 0). Following these enforced initial segments from their
(original) initial points leads to (new) enforced initial points: so instead of considering the original initial points,
we may always consider these enforced initial points.

The meaning of this will become clear by looking at the following pictures (where K = 4, M = −2 and
N = 4). Here, the enforced initial segments are shown as blue vertical lines in the middle picture, and the
enforced initial points are either blue or bicoloured (blue and red; if the enforced initial point coincides with a
terminal point):

Note that in the situation shown in the above pictures, for any nonintersecting 4–tuple the lattice path

• starting in A0 or A3 must end in B2 or in B3,

• starting in A1 must end in B1,

• starting in A2 must end in B0,

and the corresponding enforced sub–permutation

π : 1 7→ 1, 2 7→ 0

is of length 2 is descending and thus contributes (−1)(
2
2) = −1 to the sign of the overall permutation (which

depends on whether A0 is connected to B2 or B3; for both possibilities there are nonintersecting 4–tuples of
lattice paths).

2.5 Positions of enforced initial points

As a preparation for the proof, we examine the enforced initial points of the nonintersecting lattice paths
corresponding to the lhs and rhs of

• the even identities (2) and (3),

• and the odd identities (4) and (5).

As examples we consider

• the even identity for k = 2, m = 4 and n = 2,

• and the odd identity for k = 3, m = 4 and n = 3;

see the following pictures. As can be seen in the pictures, there are

• enforced initial points which are not terminal points (coloured blue),

• terminal points which are not enforced initial points (coloured red),

• and enforced initial points which are also terminal points (with colours blue and red, we call such points
two–faced).

ECA 5:3 (2025) Article #S2R17 5
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l, e, k = 2, m = 4, n = 2

K = 4, M = −5, N = 8

r, e, k = 2, m = 4, n = 2

K = 4, M = 3, N = 2

l, o, k = 3, m = 4, n = 3

K = 5, M = −5, N = 9

r, o, k = 3, m = 4, n = 3

K = 5, M = 2, N = 3

In order to show that there are

• always two–faced points in the lhs,

• but never two–faced points in the rhs,

(as the above pictures suggest), note that the first enforced initial points lie on the line

(y = −x− 2M −K + 2)

with slope −1 through the point (−M,−M −K + 2). This line intersects the diagonal (y = x) (which contains
the terminal points) in the point

S =

(

−M + 1−
K

2
,−M + 1−

K

2

)

,

so terminal points which are also initial points only exist if the following inequality holds:

−M + 1−
K

2
≥ 0 ⇐⇒

K

2
≤ −M + 1. (7)

If (7) holds, then the number of two–faced points is
⌊

−M + 1− K
2

⌋

+ 1.

2.5.1 Even identities

In the even case, the parameters for the lhs are

K = 2k,M = 1− k −m,N = n+m+ k,

so the point of intersection is S = (m,m), and inequality (7) reads

k ≤ m+ k,

which is true for m ≥ 0 (and there are m+ 1 two–faced points), and the parameters for the rhs are

K = 2k,M = 1− k +m,N = n

so the point of intersection is S = (−m,−m), and (7) reads

k ≤ k −m,

which is false for m ≥ 1 (and there are no two–faced points).
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2.5.2 Odd identities

In the odd case, the parameters for the lhs are

K = 2k − 1,M = 2− k −m,N = n+m+ k − 1,

so the point of intersection is S =
(

m− 1
2 ,m− 1

2

)

, and (7) reads

k −
1

2
≤ m+ k − 1

which is true for m ≥ 1 (and there are m two–faced points), and the parameters for the rhs are

K = 2k − 1,M = 1− k +m,N = n,

so so the point of intersection is S =
(

−m+ 1
2 ,−m+ 1

2

)

, and (7) reads

k −
1

2
≤ −m+ k,

which is false for m ≥ 1 (and there are no two–faced points).

2.5.3 Even and odd identities

It is easy to see that for the lhs and the rhs, the number of initial points strictly below the diagonal (y = x) is
always min (k − 1, N), and that for the lhs and n ≥ 0, the number of initial points

• strictly above the diagonal (y = x) is always n,

• on the diagonal (these are the two–faced points) is

– m+ 1 for the even case

– and m for the odd case,

which we express uniformly as (m+ [even]), using Iverson’s bracket.

(Iverson’s bracket [“some assertion”] is defined as 1 if “some assertion” is true, otherwise as 0: we shall employ
this useful notation also in the following.)

The following pictures give a schematic illustration of the situation (here, the two–faced points for the lhs

are indicated by a box coloured blue and red, and all other initial and terminal points are indicated by blue
and red boxes, respectively):

δ = m −
1
2

· [odd]

n

m
+
[e
ve
n]

n
+
k
−

1

k
−

1

lhs (schematic):

δ = m −
1
2

· [odd]

k
−

1

n

n
−

k
+
1

rhs (schematic):

Note that the distance δ between the orthogonal projections

• of the first initial point (for the lhs: above the diagonal (y = x))

• and of the first terminal point (for the lhs: which is not two–faced)

on the forbidden line is the same for the lhs and the rhs (namely δ = m+ 1
2 · [odd], see the above pictures).
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2.5.4 A first consequence

These simple observations already prove identities (2) and (4): if for the lhs

• N < m+ k in the even case

• or N < m+ k − 1 in the odd case,

then the terminal point (0, 0) cannot be reached by any initial point, and therefore the generating function of
the corresponding nonintersecting lattice paths is zero. So it only remains to prove identities (3) and (5)

2.6 A warmup–exercise: Cigler’s Conjecture for k = 1

The simple observations we made so far already give a simple bijective proof (essentially by looking at suitable
pictures) for the special case k = 1 of Theorem 1.1 (the odd identities for k = 1 are, in fact, equivalent to
Cigler’s earlier result [4, equation (5)], see also [3, Theorem 1, equation (6)]):

Proof of Cigler’s Conjecture for special case k = 1. We start with the odd identities with parameters K = 2k−
1 = 1 and

• M = 1−m and N = n+m for the lhs,

• M = m and N = n for the rhs.

Observe that in this situation the initial points Ai and the terminal points Bj are collinear.
Recall that (4) was already proved in section 2.5.4.
For N = m (this is the special case n = 0 for the lhs of (5)), we have

Bi = (i, i) = Am−1−i for i = 0, 1, . . . ,m− 1,

and there is precisely one N–tuple of nonintersecting lattice paths (where all paths have length 0), and the
corresponding permutation

π : i 7→ m− 1− i for i = 0, 1, . . . ,m− 1

has sign sgn (π) = (−1)(
m

2 ). Since the rhs of (5) equals 1 by convention for N = n = 0, equality holds in this
special case.

The following pictures illustrate these simple observations for m = 3 (i.e., M = 2 − k − m = −2) and
N = n = 1, 2, 3 (again, two–faced points are coloured blue and red):

In order to show (5) for n > 0, observe that in this specific situation there are also “enforced terminal
segments” of horizontal steps to the right for the lattice paths, since no terminal point Bj can be reached by a
vertical upward step. The following pictures illustrate the situation for m = 3 and n = 1, 2, implying

• M = 2− k −m = −2 and N = 4, 5 for the lhs of (5), shown in the left pictures below,

• M = 1− k +m = 3 and N = 1, 2 for the rhs of (5), shown in the right pictures below:

ECA 5:3 (2025) Article #S2R17 8
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Now observe that the enforced initial and terminal points corresponding to the lhs of (5) are simply obtained
by a translation of the enforced initial and terminal points corresponding to the rhs (recall the considerations
and pictures in section 2.5.3), and that the m enforced two–faced points

• correspond to the same translation of the forbidden line

• and contribute a factor (−1)(
m

2 ) to the sign of the corresponding permutation (which has fixed points
m+ 1,m+ 2, . . . , N − 1).

These observations conclude the proof of the odd identity (5) for the special case k = 1.
The proof of the even identity (5) with parameters K = 2k = 2 and

• M = −m and N = n+m+ 1 for the lhs,

• M = m and N = n for the rhs,

is completely analogous to the odd case, see the following pictures for m = 2 (i.e., M = 1 − k −m = −2 and
M = 1− k +m = 2, respectively, for the lhs and the rhs):

ECA 5:3 (2025) Article #S2R17 9
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The same reasoning as for the odd identity concludes the proof.

3. Bijective proof of Cigler’s Conjecture for k > 1

The rest of this paper is devoted to a bijective proof of Ciglers’s Conjecture for k > 1. While all single arguments
are elementary, the chain of arguments is long and complicated: we will make extensive use of pictures to explain
them, hoping that the saying “A picture is worth a thousand words” proves to be true.

3.1 Encoding permutations of survivors

Let us call a permutation π admissible if there are survivors (N–tuples of nonintersecting lattice paths) con-
necting initial point Ai to terminal point Bπ(i) for i = 0, 1, . . . , N − 1.

Note that for every survivor, the lattice path reaching the terminal point Bi may have length 0 (if Bi is also
an enforced initial point: this can only happen for the lhs; see subsection 2.5.3), but otherwise must end

• either with an upward step from below

• or with a rightwards step from the left;

see the following pictures:

l, o, k = 3, m = 3, n = 3

K = 5, M = −4, N = 8

0

1

2

3

4

5

6

7

2

3

4

0

1

5

6

7

r, o, k = 3, m = 3, n = 3

K = 5, M = 1, N = 3

0

1

2

0

1
2

Considering the lhs, note that all lattice paths starting at enforced initial points

• below the diagonal must end with an upwards step,

• on the diagonal have length 0,

• above the diagonal must end with a rightwards step.

This means that all admissible permutations for the lhs must map

• indices k − 1, k, k + 1, . . . , k + (m+ [even situation])− 2

• to indices 0, 1, . . . , (m+ [even situation])− 1

in reverse order (in the above picture: 2 7→ 2, 3 7→ 1 and 4 7→ 0). We may disregard this “enforced subpermu-
tation” and renumber the initial and terminal points as indicated in the following picture:

l, o, k = 3, m = 3, n = 3

K = 5, M = −4, N = 8

0

1

2

3

4

0

1

2

3

4
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With this renumbering for the lhs (and the original numbering for the rhs), we assign to π the 01–code
(omitting terminal point B0)

c (π) = ([Terminal point Bi is reached from the left])i≥1 .

By considering enforced terminal segments, as illustrated in the following pictures, is easy see that the
mapping π 7→ c (π) is injective:

Code 01. Code 10. Code 11.

(Note that no admissible permutation is mapped to 01–code 00 in the situation depicted above, since the
paths must not intersect the forbidden line.) We call a 01–code admissible if it is assigned to an admissible
permutation, so (by definition) there is a bijection between the set of admissible permutations and the set of
admissible codes.

3.2 Relations between signs of admissible permutations and their codes

We want to express the sign of an admissible permutation π in terms of its corresponding 01–code c (π): as base
cases, we consider the 01–codes

• consisting of k − 1 zeros, followed by n ones, for the lhs,

• consisting of l ≥ 0 zeros, followed by n− l ones, for the rhs (note that l = 1 means that the permutation
has precisely one inversion).

The permutations corresponding to these base cases are visualized in the following pictures:

k − 1 m+ [even] n l + 1 n−l−1

LHS RHS

Clearly, the signs of these permutations are

• (−1)(
m+[even]+k−1

2 ) for the lhs (since the number of inversions of this permutation is
(

m+[even]+k−1
2

)

),

• (−1)(
l+1
2 ) for the rhs (since the permutation has

(

l+1
2

)

inversions (note that this is true also for l = 0).

For a 01–code c = (ci)i≥1, an inversion of c is a pair of indices (i < j) such that ci > cj . Denote by inv (c) the
number of inversions of c.

If we number the zeros in some 01–code c from left to right (starting with 1) and assume that the i–th zero
appears at index zi (zi ≥ 1 by definition) in c, then the number of inversions of c equals the sum

inv (c) =

#(zeros in c)
∑

i=1

(zi − i) .

It is easy to see: a permutation π with code c (π)

• for the lhs has
(

m+ [even]

2

)

+ inv (c (π)) (8)

inversions,

ECA 5:3 (2025) Article #S2R17 11
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• for the rhs has
(

l + 1

2

)

+ inv (c (π)) =

l
∑

i=1

zi (9)

inversions, if c contains exactly l zeros.

(We will use these facts at the end of our proof.)
Assume that in some 01–code c = (ck)k≥1 we have for 1 ≤ i < j

• ci = 1

• and cj = 0,

and let l be the number of components ck = 0, for i < k < j: Then swapping ci and cj

• decreases the number of inversions involving ci by l + 1,

• increases the number of inversions by 1 for each of the j − i− 1− l ones between i and j,

so the change in sign caused by such swap is (−1)|j−i|, and the same holds true for ci = 0 and cj = 1: we note
this simple observation for later reference.

3.3 Rewrite the identities as equations for sums over 01–codes

If we consider the set of all admissible codes for the lhs and for the rhs in equations (3) and (5) and write
gf (c) for the generating function of survivors corresponding to c (i.e., with permutation π of terminal points
corresponding to c), then we may write (3) and (5) in a uniform way:

∑

C for LHS

sgn (π) gf (C) =
∑

c for RHS

sgn (π) gf (c). (10)

In general, neither the summation ranges nor the summands of this identity coincide: our proof will involve
“reducing” the (larger) sum for the lhs to the sum of the rhs, by certain cancellations resembling the Lind-
ström–Gessel–Viennot–involution.

3.4 Plan for our bijective proof

The plan for our bijective proof is simple:

1. Find another sign–reversing involution ψ on the set of all survivors (i.e., nonintersecting lattice paths)
corresponding to the lhs.

2. Show that there is a bijection ξ

• from the set of the fixed points of ψ (i.e., the survivors of the second cancellation corresponding to
ψ) for the lhs

• to the set of survivors corresponding to the rhs

• which changes the sign by a constant factor f (i.e., sgn (ξ (o)) = f · sgn (o)), namely

– f = (−1)(
m+k

2 ) in the even case,

– f = (−1)(
m+k−1

2 ) in the odd case.

As it will turn out, the bijection ξ “respects the summands in (10)” in the following sense: it implies a bijection
between

• the summation range (i.e., 01–codes C) of survivors of the second cancellation (effected by ψ) appearing
in the lhs of (10)

• and the summation range (i.e., 01–codes c = ξ (C)) for the rhs of (10),

and it maps

• survivors of the second cancellation corresponding to 01–code C in the lhs

• to survivors corresponding to 01–code c = ξ (C) in the rhs.
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3.5 Step 1: Construct the sign–reversing involution ψ

We shall construct the sign–reversing involution ψ on the set of survivors for the lhs by combining the Lind-
ström–Gessel–Viennot–idea with simple reflections on the diagonal line d = (y = x).

3.5.1 Reflection for the lhs: the folded situation

If we reflect on the diagonal d all nonintersecting lattice paths for the lhs which lie above d, then we call the
result of such reflection the folded situation. In the following pictures, reflected paths will be coloured green,
as well as their reflected initial points (and all paths and initial points below d, which are not reflected, will be
coloured blue, as before).

We illustrate this for the odd identity with parameters k = 3, m = 2, and n = 2 (i.e., K = 2k − 1 = 5,
M = 2 − k −m = −3, and N = n+m+ k − 1 = 6). “In terms of initial, two–faced and terminal points”, the
transition from the original situation to the folded situation looks like this:

l, o, k = 3, m = 2, n = 2

K = 5, M = −3, N = 6

l, o, k = 3, m = 2, n = 2

K = 5, M = −3, N = 6

Note that in the right picture above (showing the folded situation), a certain trapezoid is marked in colour, and
additional white points on the forbidden line points are shown. We call this the essential region: its significance
and the meaning of the white points will soon become clear.

3.5.2 Reflection for the rhs: The reflected situation

If we reflect on d the forbidden line y = x −K and all nonintersecting lattice paths for the rhs, then we call
the result of such reflection the reflected situation.

Again, we illustrate this for the odd identity with parameters k = 3, m = 2 and n = 2 (i.e., K = 2k− 1 = 5,
M = 1− k+m = 0, and N = n = 2). “In terms of initial and terminal points”, the transition from the original
situation to the reflected situation looks like this:

r, o, k = 3, m = 2, n = 2

K = 5, M = 0, N = 2

r, o, k = 3, m = 2, n = 2

K = 5, M = 0, N = 2

Note that in the right picture above (showing the reflected situation), a certain trapezoid is marked in colour
again, which we also call the essential region (for the reflected situation).

3.5.3 Essential regions

It is easy to see (recall the considerations and illustrations in section 2.5.3) that there is a translation which
transforms

• the essential regions for the folded situation
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• to the essential region for the reflected situation,

which maps bijectively

• green initial points to green initial points

• and white additional points to terminal points,

and which swaps the roles of the diagonal and the forbidden line for the folded situation and the reflected
situation (see the essential regions in the above pictures).

This congruence of essential regions is crucial for the second step in our proof: Clearly, the reflections
explained above give sign–preserving bijections (since the permutation π is not affected by the reflections) from
the “original situation” to the folded or reflected situation, respectively, so instead of defining a sign–preserving
bijection between

• the survivors for the lhs which also “survive” the cancellation effected by the second sign–reversing invo-
lution ψ (yet to be defined)

• and the survivors for the rhs,

we will define the sign–preserving bijection ξ between

• the “twofold” survivors for the lhs in the folded situation

• and the survivors for the rhs in the reflected situation.

The construction of this bijection ξ will involve only the essential regions, leaving segments of green paths
outside the essential regions unchanged.

3.5.4 Folded overlays

In the following illustration, the left picture shows nonintersecting lattice paths (for the lhs), and the right
picture shows the folded situation, obtained by the reflection of all paths above the diagonal d = (y = x) on d:

π : (3, 1, 0, 2, 4).

Observe that by this reflection, we get an overlay of green and blue paths, such that

• all paths (blue or green) are restricted to the range y ≤ x,

• blue paths additionally are restricted to the range y > x−K,

• blue and green paths are nonintersecting, i.e., there is no point of intersection of two blue paths or two
green paths.

We shall call such overlay of green and blue paths a folded overlay. (As already mentioned, folded overlays are
in sign–preserving bijection with the “original” nonintersecting lattice paths).

Note that a folded overlay appears as a directed subgraph of the lattice Z2 with green and blue edges, which

• have the normal direction (rightwards or upwards),

• but might be traversed in the reversed direction (leftwards or downwards),

and where double edges (which necessarily must be of opposite colours blue and green) are allowed. We
call vertices in this graph which are incident only with a green (or blue, respectively) edge a green (or blue,
respectively) point, and we call points which are incident with green and blue edges bicoloured.
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3.5.5 Points of bicoloured intersection and the Lindström–Gessel–Viennot–idea for folded over-

lays

An overlay of green and blue paths may have bicoloured points where some blue path intersects some green path:
in the above right picture, there are three such points of bicoloured intersection, the maximal (in lexicographic
order) of them is indicated by a small square. Clearly,

• every terminal point and every initial point which is not bicoloured is incident with precisely one step
which is either green or blue,

• every bicoloured point is incident with

– precisely two blue and precisely two green steps if it is not an initial point,

– precisely one blue and precisely one green step if it is an initial point,

• every other point is incident with precisely two steps of the same colour (either green or blue).

In the above pictures, we immediately see how a sign–reversing involution resembling the Lindström–Gessel–
Viennot–method might work — just look at the pictures below, where terminal segments of paths after the
maximal point of bicoloured intersection are exchanged:

π : (4, 1, 0, 2, 3).

However, we need a slightly more complicated construction.

3.5.6 The significance of essential regions

Clearly, a point of bicoloured intersection in some folded overlay can only be located

• weakly above the forbidden line (since there are no blue steps strictly below)

• and weakly above the line containing the blue initial points (since there are no blue steps strictly below)

• and weakly below the line (y = x) (since there are no points above)

• and weakly to the left of the line x =M − 1 (since there are no points to the right).

Note that the region just described is precisely the essential region for the folded situation: in the following, we
will mostly focus our attention on this essential region.

3.5.7 Bicoloured connections and the sign–reversing involution

For each terminal point Bj in a folded overlay, we construct the bicoloured path starting at Bj as follows: we
start with

• P = Bj,

• the reversed direction as current direction

• and the unique colour of the path ending in Bj as current colour.

As long as this is possible, we traverse the edge incident with P

• of the current colour

• in the current direction,
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to its other endpoint Q and set P = Q; and if Q is a point of bicoloured intersection, we swap the current colour
(blue/green) and the current direction (normal/reversed).

It is easy to see that this construction must end in an initial or terminal point Q where we cannot continue
(i.e., where there is no incident edge of the current colour and current direction): we call such bicoloured path
from Bj to Q a bicoloured connection of Bj and Q.

The following pictures illustrate this construction: in the left picture, we start at the green terminal point
labeled Q, and in the right picture, we start at the green terminal point labeled P .

P

Q

P

Q

(Observe that there is also a shorter bicoloured connection, indicated in the pictures by the crosshatched area.)
Now we are in the position to define the involution ψ on the set of all overlays of green and blue paths in the

folded situation of the lhs: Let o be an overlay of green and blue paths: we call a bicoloured connection c in o

• which connects two different terminal points Ba 6= Bb,

• and whose green segments never intersect the forbidden line

an involutive bicoloured connection. (Note that Ba and Bb must have opposite colours, and that an involutive
bicoloured connection never leaves the essential region.)

A moment’s thought shows that swapping the colours (green to blue and vice versa) of all edges belonging
to an involutive bicoloured connection gives another overlay of green and blue paths o′:

• By construction, the blue paths and the green paths in o′ are nonintersecting,

• and the blue paths in o′ do not intersect the forbidden line.

(The right picture above is obtained by this swapping of colours, and vice versa.)
So for all folded overlays o

• which do not contain any involutive bicoloured connection, we simply set ψ (o) = o,

• which contain involutive bicoloured connections, we choose the maximal terminal point (in lexicographic
order) for which an involutive bicoloured connection c exists and define ψ (o) as the folded overlay o′

obtained by the swapping of colours in c (as described above).

In the following pictures, the possible courses of bicoloured connections through a point of bicoloured inter-
section are indicated by small arrows:

• They show “essentially all” possible situations at points of intersections in the network of blue and green
paths (modulo swap of colours blue and green, or directions horizontal and vertical)

• and make clear that each bicoloured edge would form a (trivial) bicoloured connection of the vertices it is
incident with (so bicoloured edges never belong to bicoloured connections of initial or terminal points).
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A moment’s thought shows that swapping colours in a bicoloured connection

• does not change any other bicoloured connection,

• does not destroy any existing bicoloured connection,

• and does not introduce new bicoloured connections:

So the mapping ψ is, in fact, an involution.
Moreover, bicoloured connections may intersect, but (by construction) can never cross (neither “itself” nor

“one another”). Therefore, a bicoloured connection of terminal points Ba and Bb forms an “impenetrable
barrier” for other bicoloured connections (see the above pictures, where the area enclosed by this “barrier”
is coloured). But this implies that the number of terminal points between Ba and Bb must be even, so for
o 6= ψ (o), we have sgn (ψ (o)) = − sgn (o), since the swapping of colours amounts to swapping

• a zero at position a

• and a one at position b

(or vice versa) with odd distance |a− b| in the 01–code corresponding to o (see the considerations in section
3.1). Therefore, the mapping ψ is, in fact, sign–reversing.

So the determinant on the lhs in (3) and (5) appears as the generating function of the fixed points of ψ,
who “survive” the cancellation effected by ψ. Clearly, these fixed points are the folded overlays which do not
contain any involutive bicoloured connection: We shall call them folded survivors.

The next step in our proof is the exhibition of a bijection ξ between the

• the folded survivors in the lhs (in the folded situation)

• and all (“normal”) survivors in the rhs (in the reflected situation)

of identities (3) and (5).

3.6 Step 2: Exhibit the bijection ξ

The bijection ξ we shall exhibit in this section between

• folded survivors (i.e, nonintersecting lattice paths from the folded situation of the lhs which “survive” the
cancellation by the sign–preserving involution ψ),

• and (“normal”) survivors (i.e., nonintersecting lattice paths) from the reflected rhs

will leave unchanged all segments of paths outside the essential regions and employ a “natural transformation”
from

• the restriction to the essential region of folded survivors, which have

– terminal points on the diagonal y = x

– and the forbidden line for blue paths y = x−K,

• and the restriction to the essential region of (“normal”) survivors, which have

– terminal points on the diagonal (corresponding by a translation to the forbidden line)

– and the reflected forbidden line y = x+K (corresponding by a translation to the diagonal).

In order to conceive this “natural transformation” inside the essential region, we will show that a folded overlay
is a folded survivor if and only if it has a certain simple structure. This will be the most strenuous part of this
section: once we have achieved this, the “natural transformation” will basically be obtained by “inspection of
pictures”.
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3.6.1 Examples of folded survivors

By definition, a folded survivor is a folded overlay which does not have an involutive bicoloured connection, i.e.,

• either there is no point of intersection at all

• or each bicoloured connection of terminal points contains some green segment which intersects the forbid-
den line y = x− k.

The following pictures illustrate this:

It is hard to conceive the structure of folded survivors in small examples, so we shall consider larger ones:
in order to limit the size of the corresponding pictures, we observe that for any folded overlay F there are
constants z ∈ Z such that F does not have points of bicoloured intersection (x, y) with y > z, so we will “cut
away” the uninteresting part above such level z in the following graphical illustrations.

The following picture shows a folded survivor in the odd case with parameters k = 7, m = 4 and n = 9
(which gives K = 13, M = −9 and N = 19 for the lhs), where we have “cut away” the part above level 5:

Here, the four two–faced points and only two of the terminal points are shown (the others are “cut away”), and
the essential region (which, too is cut) is indicated as coloured area.

It is easy to verify “by inspection” that this folded overlay has no involutive bicoloured connection. We shall
use this folded survivor as a running example in this section.

Since the transformation we want to present only involves the part inside the essential region (where points
of bicoloured intersections might be located), we shall omit the green segments of paths outside the essential
region in the following pictures.

3.6.2 The planar graph corresponding to a folded overlay

Let F be some folded overlay: if we

• consider only points and steps inside the essential region,
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• disregard the orientation (but not the colour!) of all edges,

• and “merge” all double (undirected) edges thus obtained into bicoloured single edges (having colours blue
and green; we shall call the edges of unique colour unicoloured),

then we obtain a simple planar graph. Note that all “interior” vertices of this graph have degree 2, 3 or 4, and
“loose ends” (vertices of degree 1) can only appear on the “boundary”, i.e., they are

• either terminal points

• or initial blue points

• or green points on the forbidden line.

We can “close such loose ends” by introducing artificial slanted edges connecting neighbouring “loose ends”,
with the following “colouring rule”:

• slanted edges on the line (y = x) have the same colour as their left point,

• slanted edges on the line (y = −x− 2M −K + 2) (this is the line containing the blue initial points) are
coloured green,

• slanted edges on the forbidden line (y = x−K) are coloured blue;

see the following picture for an illustration, where we also added blue and green terminal points (shifted
downwards, to limit the height of the picture) together with the entries in the corresponding 01–code: recall
that, by definition,

• blue terminal points are reached from below,

• green terminal points are reached from the left

in the original (unfolded) situation (the rightmost isolated green point on the forbidden line indicates the 9–th
green path, all of whose steps are completely “cut away”) in this picture:

0 1 1 0 1 0 1 1 1 0 1 0 1 1

The only reason for introducing these artificial slanted edges is to avoid the tedious distinction between “partially
open” and “closed areas”, which now uniformly appear as finite faces in the simple planar graph thus obtained:
We call it the planar graph corresponding to F and denote it by F

3.6.3 Faces of the planar graph corresponding to a folded overlay

It is obvious that F is connected, and that the boundary ∂f of each finite face f of F is a closed curve in R
2,

which we may traverse in counterclockwise orientation. But it is not so obvious that this closed curve must
correspond to a circle in the graph–theoretical sense (i.e., passes through every point at most once).

When traversing (in counterclockwise orientation) the boundary ∂f of a finite face f of of some general
planar subgraph G (without vertices of degree 1) of the lattice Z

2, there are edges

• which are traversed rightwards or upwards: call those the black edges,

• which are traversed leftwards or downwards: call those the red edges.

Now observe that, in general, there can be precisely eight types of kinks in ∂f , as shown in the following picture
(where the crosshatched areas indicate the finite face f whose boundary contains the kink):
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But a moment’s thought shows that two of these kinks are impossible if f is a finite face of the planar graph F
corresponding to some folded overlay F (these are “crossed out” in the pictures above), so there are only

• two types of kinks consisting of two red edges: denote them by rr and rr,

• two types of kinks consisting of two black edges: denote them by bb and bb

• and one type of kink where a red edge is followed by a black edge (denote this by rb,

• and one type of kink where a black edge is followed by a red edge (denote this by br),

which can occur in the boundary ∂f of some finite face f of F . Note that when traversing such boundary in
counterclockwise orientation,

• rr may follow rr, and vice versa; and rr may also be followed by rb,

• bb may follow bb, and vice versa; and bb may also be followed by br,

• br can only be followed by rr,

• rb can only be followed by bb,

and there is no other possible succession of types of kinks.
Clearly, the boundary ∂f must contain at least

• one red path segment (consisting only of red edges)

• and one black path segment (consisting only of black edges)

(since otherwise ∂f would be just a path in Z
2), and red and black segments must be “joined” by kinks br or

rb. Now consider the maximal kink br (in lexicographic order) in ∂f : the following picture (where the maximal
kink br is labeled P ) makes clear that there cannot be another kink br in ∂f .

P

Q

So the boundary ∂f of every finite face of F consists precisely of

• one black segment (we shall call it the right boundary of f)

• and one red segment (we shall call it the left boundary of f).

3.6.4 Vertical strips

For our further considerations we will need a very simple special case: We call a finite face f of F a vertical
strip if its left and right boundaries both contain only one horizontal or slanted step, and we call the vertical
segment of the left (or right, respectively) boundary of f the left side (or right side, respectively) of f .

It is easy to see that for any vertical strip f in F ,

• the last (vertical) edge ev of the left (or right) side of f and the horizontal edge eh immediately following
ev must have opposite colours, whence both ev and eh must be unicoloured,
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• and all edges of the left (or right) side of f must have the same colour as ev (but some of them might
have both colours);

see the following picture, which shows the four possible combinations of the colours of the left and right side of
vertical strips, which we denote by BB, BG, GB and GG:

BB BG GB GG

Note that the horizontal edges in the pictures above could also be artificial slanted edges, as explained above.

3.6.5 Adjacency of vertical strips

We say that a pair (fl, fr) of vertical strips is adjacent if the intersection

• of the right side of fl

• with the left side of fr

is not empty, but does not contain a horizontal edge, and we call fl the left strip and fr the right strip of the
adjacent pair. The following pictures show all the relative positions (“modulo the swap of colours blue and
green”) of left and right strips of an adjacent pair (fl, fr), and make clear that not all of these relative positions
are possible in the planar graph F corresponding to some folded overlay F : recall that according to the above
considerations,

• all horizontal (or artificial slanted) edges are necessarily unicoloured edges,

• and

– the upper horizontal (or artificial slanted) edge of the left strip fl and the uppermost vertical edge
of the right side of fl

– as well as the the lower horizontal (or artificial slanted) edge of the right strip fr and the lowest
vertical edge of the left side of fr

are both unicoloured and of different colours.

In the following pictures, unicoloured horizontal edges whose colour is not already determined (as just explained)
are drawn in gray. However, in some situations, their colour is implied by the situation of the adjacency: this is
shown by marking such edges with double exclamation marks of the respective colour in the following pictures.

3.6.6 Impossible adjacencies

A careful inspection reveals that the following situations of adjacencies are impossible (and therefore are crossed
out in the pictures):

!! !!

!!

!! !!

!!

To see this, just note that in a folded overlay

• a point is never incident with two outgoing (or incoming) steps of the same colour as is the case in the
first three of the above pictures,
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• and a path never starts (or ends) on the side of a vertical strip, as is the case in the last three of the above
pictures.

Also, the following situations of adjacencies are impossible (note that the vertical sides are of different colour
here):

3.6.7 Possible adjacencies: Ascending and descending

However, similar situations with vertical sides of the same colour are possible: we say that an adjacent pair in
any of these relative positions is ascending.

Note for later reference that

• the horizontal edges involved in an ascending adjacent pair of vertical strips

• together with their adjacent vertical edges

may be viewed as (segments of) nonintersecting lattice paths, see the following picture for an illustration, where
these segments are drawn in black:

Finally, also the following situations of adjacencies are all possible: we say that an adjacent pair in any of the
relative positions shown below is descending.
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!!

!!

!!

!!

!!!! !!!!

The following observation is an immediate consequence of the above considerations:

• For any descending adjacent pair, the left strip and the right strip must be of the same type BB, BG, GB

or GG.

• If in an ascending adjacent pair the left strip is of type BB or GB, then the right strip must be of the type
BB or BG.

• If in an ascending adjacent pair the left strip is of type BG or GG, then the right strip must be of the type
GB or GG.

3.6.8 Rows of columns of vertical strips

Note that if every finite face of F is a vertical strip, then we can partition the family of these faces in maximal
chains of descending adjacent vertical strips, i.e.,

• sequences (v1, v2, . . . , vl) of vertical strips of the same type

• where (vi, vi+1) are descending adjacent (as explained above) for i = 1, 2, . . . , l − 1,

• which cannot be “extended” to a longer sequence with the same properties.

We call such maximal chains columns.
Note that these columns may be ordered such that (the vertical strips belonging to) two consecutive columns

are ascending adjacent: we call such succession of ascending adjacent columns a row of columns.

3.6.9 Free kinks and other configurations

We consider the following four situations that might occur in the simple planar graph F corresponding to some
folded overlay F :

• A free kink is a unicoloured path segment consisting of a horizontal step followed by a vertical step, whose
“middle vertex” has degree 2 (i.e., is not incident to another edge)

• a horizontal bicoloured edge (as defined above),

• an isolated vertex is a point in the essential region that does not belong to any path,

• an uncrossed double step is a unicoloured path segment consisting of two horizontal steps.

The pictures below illustrate these simple notions:
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3.6.10 Folded overlays down to some given level y0

Let F be the planar graph corresponding to some folded overlay F . For some fixed z ∈ Z, we may remove all
vertices and edges which lie strictly below the horizontal line (y = z) in both F : we denote by Fz the result of
this operation.

This operation might introduce “new loose ends” (vertices of degree 1) in Fz: As before, we “close” such
“loose ends” by adding edges of appropriate colour (again, these artificial edges are only introduced “for conve-
nience”, in order to simplify the description). Note that the boundaries of all finite faces in Fy again consist of
a right segment and a left segment, as described in section 3.6.3

Lemma 3.1. Let F be a folded overlay, and let z ∈ Z. If Fz+1 does not contain a free kink, then Fz does
contain

• neither an isolated vertex

• nor a horizontal bicoloured edge

• nor an uncrossed double step.

Proof. Consider the set
S =

{

ζ ∈ Z : Fζ does contain a horizontal step
}

⊂ Z.

If S is empty, then F clearly does contain neither a horizontal bicoloured edge nor an uncrossed double step,
and since in this case the whole graph appears as a “curtain of vertical paths, pending from the terminal points
without any gaps”, there also is no isolated vertex: So the assertion is true in this case.

If S 6= ∅, then consider z0 = max (S) ∈ Z.
For z ≥ z0, Fz might be empty: in this case the assertion is trivially true. Otherwise, Fz consists of a

“curtain of vertical paths” (as above), and some (unicoloured!) horizontal steps on level z0 (only if z = z0): so
every vertex (x, y) in Fz is adjacent to a vertical step, and this implies that Fz does contain

• neither an isolated vertex

• nor a horizontal bicoloured edge b (since the vertical upwards step incident with the left point of this edge
b would have the same colour as b)

• nor an uncrossed double step.

Now assume that the assertion is false, and let z1 < z0 be the maximal level for which this is the case, i.e.,
z1 is the maximal integer such that Fz1+1 does not contain a free kink, but Fz1 contains

• either an isolated vertex

• or a horizontal bicoloured edge

• or an uncrossed double step.

But a close look at these situations reveals that this is impossible:

z1

Note that in all three situations at level z1 depicted above, the vertex directly above (indicated by a small box
in the pictures) cannot be entered by a vertical step from below. But it is not an isolated vertex (since there
are none on level z1 + 1 by assumption), so

• it must be entered from the left by a horizontal step of unique colour, since there are no bicoloured edges
on level z1 + 1,

• and it must be left by a vertical step (of the same colour, of course), since there are no uncrossed horizontal
steps at level z1 + 1.

But this would give a free kink on level z1 + 1, a contradiction.

Lemma 3.2. Let F be a folded overlay, and let z ∈ Z. If Fz+1 does not contain a free kink, then every finite
face of Fz is a vertical strip.
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Proof. Let f be an arbitrary finite face of the planar simple graph Fz and consider the left side l of f , which
we traverse now in the normal direction (i.e., rightwards and upwards).

Recall that l starts with a vertical step. If l does not contain a horizontal step, it must end with a single
slanted step.

By Lemma 3.1, l does contain

• neither a horizontal bicoloured edge

• nor an uncrossed double step:

So every horizontal step h belonging to l is unicoloured: if h is not the last step in l, then it must be followed
by a vertical edge v in l, and since l starts with a vertical step, this horizontal step h must appear on some level
> z.

Since Fz+1 does not contain a free kink, v must be bicoloured. But the segment (h, v) cannot belong to the
left side of f , as the following picture shows:

f

−2 −1 0 1
−2

−1

0

1

2

So only the last step in l may be horizontal or slanted: in both cases, the right side of f is a path from the
initial point (x, y) of l to its terminal point (x+ 1, y + h) (for some integer h) which starts with a horizontal or
slanted step, and f is a vertical strip.

Lemma 3.3. If F is a folded survivor, then F cannot contain free kinks strictly above the forbidden line (i.e.,
the “middle vertex” of any free kink must lie on the forbidden line).

Proof. Consider again the set

S =
{

ζ ∈ Z : Fζ does contain a horizontal step
}

⊂ Z.

If S is empty, then F clearly does not contain a free kink: So the assertion is true in this case.
If S 6= ∅, then consider z0 = max (S) ∈ Z: clearly, Fz0+1 does not contain a free kink. Now assume that

the assertion is false, and let z ≤ z0 be the maximal number such that Fz does contain a free kink above the
forbidden line.

By Lemma 3.2, every finite face of Fz is a vertical strip, and we may arrange the family of these faces in a
row of columns. Clearly, a free kink can only occur in columns of type BG or GB. The following picture shows
the possibilities for such columns:

1 2 3 4 5

Picture 5 (counted from the left) shows an impossible chain (since blue paths never intersect the forbidden line)
and is thus crossed out.

Picture 4 shows a column of type BG which ends with a (green) free kink on the forbidden line.
Picture 3 shows a column of type GB which does not end in a free kink.
Pictures 1 and 2 show free kinks strictly above the forbidden line (marked by small rhombi in the pictures):

it is easy to see that these chains would give involutive bicoloured connections of two terminal points of different
colour, which contradicts our assumption that F is a folded survivor.

Lemma 3.4. If F is a folded survivor which contains a column c of type GB, then there cannot be a column c′

of type BB which lies to the right of c.
In particular, any column which is ascending adjacent “to the right” of c must be of type BG.
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Proof. If c would end above the forbidden line, then it would have a free kink above the forbidden line and
thus yield an involutive bicoloured connection: So c ends on the forbidden line, and the same must be true for
c′: But it is impossible for a column of type BB to run into the forbidden line, see the middle picture in the
following illustration:

(It is no problem for a column of type GG to run into the forbidden line, see the left picture above, and a column
of type BB must end in blue initial points, see the right picture above.)

By the considerations in section 3.6.5, a column c′ which is ascending adjacent to the right of c must be of
type BG or BB, and we just made clear that type BB is impossible.

Our considerations make clear that certain distributions of colours for the terminal points (which are not
also initial points) are impossible for folded survivors:

Corollary 3.1. If F is a folded survivor, then the sequence of terminal points which are not also initial points

• may start with a sequence of consecutive blue points,

• and every blue point not belonging to this starting sequence must be immediately followed by a green point.

(In other words: after the first green terminal point, there can never follow a pair of consecutive blue terminal
points.)

3.6.11 The mapping ξ from the lhs to the rhs

We showed that the planar graph F corresponding to a folded survivor F necessarily appears as a row of columns
(where consecutive columns are ascending adjacent): It is easy to see that every row of columns

• corresponds bijectively to a planar graph F of some folded overlay F

• which does not have an involutive bicoloured connection (in fact, bicoloured connections correspond pre-
cisely to columns of type BG or GB in a folded survivor, and these are not involutive since they end on
the forbidden line),

so we have the following characterization: a folded overlay F is a folded survivor if and only if its corresponding
planar graph F appears as a row of columns.

The mapping ξ from the lhs to the rhs now is best conceived by looking at a sequence of pictures: the first
picture shows our running example, where the maximal descending chains of vertical strips of the same type
are indicated by white paths:

In the next picture, chains of type GB with their mandatory “right neighbour” of type BG are indicated as
crosshatched:
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The next picture visualizes that the row of columns may be viewed as (segments of) lattice paths (drawn in
red):

Note that these red paths

• are nonintersecting,

• and end on the forbidden line,

• and can never intersect the diagonal (y = x):

So now the diagonal plays the role of the forbidden line for these red path segments, and the forbidden line
plays the role of the diagonal (in the sense that it contains the terminal points for these paths).

In the next picture, the artificial slanted edges are removed and enforced segments of green paths reaching
the forbidden line from below are added:

This shows how the colour distribution of green or blue terminal points for a folded survivor determines the
green points on the forbidden line which must be reached

• from below (by the green segments of paths just added),

• or from the left (by the red segments of paths).
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Altogether, this shows that each row of columns which corresponds to some folded survivor uniquely deter-
mines segments of nonintersecting lattice paths (the red paths in the above picture) connecting

• certain blue initial points

• with certain points on the forbidden line,

(as illustrated in the above pictures).
In the following picture, we added

• the 01–code for the lhs (corresponding to the colours of the blue and green terminal points)

• and the enforced terminal segments for the red and green paths ending on the forbidden line together with
the corresponding reflected 01–code for these terminal segments:

0 1 1 0 1 0 1 1 1 0 1 0 1 1

1

0

0

1

1

0

0

1

This picture shows that

• the (original) diagonal (y = x) plays the role of the forbidden line

• and the (original) forbidden line plays the role of the diagonal (in the sense that it contains the terminal
points)

for the collection of red and green segments of paths.

3.6.12 The effect of ξ on 01–codes and their signs

The above picture also shows

• the 01–code C for the lhs (implied by the blue and green terminal points, in our example: 01101011101011)

• and the reflected 01–code c corresponding to the black and red or green paths reaching the forbidden line,
i.e.

– 1 for points reached from below,

– 0 for points reached from the left

(in our example: 10011001).

(This swap of zeros and ones corresponds to the fact that we consider the reflected situation for the rhs here.)
The bijective correspondence between these two 01–codes is easy to see: For the i–th zero in the 01–code C

corresponding to the green and blue terminal points, we count the number zi of ones to its left (in our example,
these numbers are (0, 2, 3, 6, 7)) and omit all zeros among these numbers (in our example: (2, 3, 6, 7)). Then
these numbers are precisely the indices (starting with one) of the zeros in the reflected 01–code c. But this
simple observation already proves that the mapping ξ changes the sign of (the permutations corresponding to)
these 01–codes by a constant factor: Recall (see section 3.1) that the number of inversions of the permutation

• corresponding to some 01–code c for the rhs (which is reflected in our case, but we already accounted
for the reflection by swapping ones and zeros) is equal to the sum of the indices of the zeros in c (in our
example: the permutation corresponding to 10011001 has 2 + 3 + 6 + 7 = 18 inversions), see (9),

• corresponding to some 01–code C for the lhs is
(

m+ k − 1 + [even]

2

)

+ inv (C) ,

see (8), and inv (C) (by definition) equals the sum of the numbers
∑

i zi defined above (in our example:
0 + 2 + 3 + 6 + 7 = 18).
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3.6.13 Completion of the mapping ξ

Now by simply

• omitting the folded survivor’s overlay of green and blue paths

• and changing the colours of the red paths to green

in the above picture, we obtain the restriction to the essential region of some survivors from the reflected rhs

(in the picture, also segments of green paths outside the essential regions are shown, in order to indicate that
we view the essential region now as part of a bigger picture):

If we restore the segments of green paths outside the essential regions (see the first picture of our running
example), then we obtain the following “normal” survivor:

It is easy to see that the above picture corresponds to the situation of the reflected rhs with 01–code 01100110,
and it is obvious that the mapping ξ thus constructed is injective.

3.6.14 Surjectivity of the mapping ξ

To see that ξ is also surjective, we shall exhibit its inverse mapping: consider a “normal” survivor with 01–code
c from the reflected rhs, and interpret the segments of its green paths inside the essential region as red paths
of a folded survivor with code C corresponding to c (as described above). Then a unique row of columns (and
thus a unique folded survivor) is obtained “step by step”, starting at the diagonal (y = x), as illustrated in the
following example:
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The picture shows a section of a (“normal”) survivor for the reflected rhs with (reflected) 01–code 00011100,
where green path segments in the essential region are coloured red. According to the considerations in sec-
tion 3.6.12, the colouring of terminal points for the corresponding folded survivor is uniquely determined by
this 01–code (since the picture is cut at level 6, the terminal blue and green points above level 6 are “shifted
down”).

If we draw the row of columns “pending from the blue and green terminal points” down to the uppermost
red path, then we obtain the following picture:

Now recall that in a folded survivor, every descending chain must contain vertical strips of the same type:
so the second step of completing the descending chains “rightwards–downwards” yields the following situation:

The third step yields:

ECA 5:3 (2025) Article #S2R17 30



Markus Fulmek

And the fourth step finishes the construction, and yields a row of columns which we may view as the restriction
to the essential region of a folded survivor :

So the mapping ξ is indeed a bijection that changes the sign of survivors by the constant factor

(−1)(
m+k−1+[even]

2 )

This finishes our proof of (3) and (5).
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