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Abstract: Let s be West’s deterministic stack-sorting map. A well-known result is that every length n permu-
tation is sorted with n−1 iterations of s. In 2020, Defant introduced the notion of highly-sorted permutations—
permutations obtained by applying slightly less than n− 1 iterations of s. In 2023, Choi & Choi extended this
notion to generalized stack-sorting maps sσ, where we relax the condition of becoming sorted to the analogous
condition of becoming periodic with respect to sσ. While periodicity seems counterintuitive in the context of
sorting, it arises naturally in these restrictive forms, where the map is studied as an operator with properties
rather than a means to “sort” permutations in the usual sense.

In this work, we introduce the notion of minimally-sorted permutations as an antithesis to Defant’s highly-
sorted permutations, and show that the order of the (123, 132)-avoiding stack-sorting map is 2bn−12 c.
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1. Introduction

Knuth’s Art of Computer Programming [17] first introduced the stack-sorting machine, in which an input
sequence is sorted with a single external stack structure. The elements of the sequence are passed left-to-right
through the machine, with two possible operations at every state: push, moving the next input element onto
the stack, and pop, removing the top element from the stack and appending it to the output.

In 1990, West [21] introduced a deterministic version of Knuth’s stack-sorting machine as the stack-sorting
map s, insisting that the stack must always increase from top to bottom and employ a right-greedy process:
the push operation is chosen whenever possible. Since then, various studies have been motivated by Knuth’s
original machine and West’s deterministic s, including pop-stack-sorting [1, 2, 14, 18, 19], stack-sorting Coxeter
groups [14,15], sigma-tau machines [3–5], and stack-sorting of set-partitions [16,23].
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Figure 1: West’s deterministic stack-sorting map s on π = 2143.

In his dissertation, West [21] proved that sn−1(Sn) contains only the identity permutation, justifying repeated
applications of s as a correct and terminating sorting algorithm. A natural direction of study, then, is the
characterization of t-stack-sortable permutations—permutations π such that st(π) is sorted—for general t ≤
n − 1. Knuth [17] answered the question for t = 1, showing that π is 1-stack-sortable if and only if π avoids
subsequences of the pattern 231, enumerating the number of such permutations of length n to be 1
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the nth Catalan number. In 1990, West [21] characterized the 2-stack-sortable permutations, proving that π
is 2-stack-sortable if and only if π avoids subsequences of the pattern 2341 and the barred pattern 35241. He
also conjectured that the number of such permutations of length n is 2

(n+1)(2n+1)

(
3n
n

)
, which was proven by

Zeilberger [24] two years later. West [21, 22] then searched for a polynomial P (n) such that 3-stack-sortable
permutations could be enumerated by 1

P (n)

(
4n
n

)
, but was unsuccessful for deg(P (n)) < 7. In 2012, Úlfarsson [20]

characterized 3-stack-sortable permutations with “decorated patterns,” but only in 2021, did Defant [13] discover
a polynomial-time algorithm to enumerate 3-stack-sortable permutations.

In 2020, Defant [11] first defined t-sorted permutations, which he considered to be the duals of the t-
stack-sortable permutations [12]—permutations in the image of st(Sn), a generalization of Bousquet-Mélou’s
definition [6] of sorted. Defant then defined a permutation π ∈ Sn to be highly-sorted if π is t-sorted for some t
close to n, proving that a t-sorted permutation can contain at most bn−t2 c descents [12].

The classical stack-sorting map s has since been generalized to sσ [7] for permutations σ, where instead of
insisting that the stack increases, we insist that the stack avoids top-to-bottom subsequences of the pattern σ.
In 2021, Berlow [5] introduced the family of maps sT , where the stack must avoid top-to-bottom subsequences
of every pattern in set T (see Figure 2). In 2023, Choi and Choi [8] generalized Defant’s notion of highly-sorted
permutations, defining π to be highly-sorted with respect to sσ if π is in the image of stσ for some t close to
ordsσ (Sn), where ordsσ (P ) is the smallest integer k such that every element in skσ(P ) is periodic under sσ. We
straightforwardly extend this definition to generalized maps sT .
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Figure 2: The generalized stack-sorting map s123,132 on π = 52431.

Recently, Choi, Gan, Li, and Zhu [9] studied set partitions that require the maximum number of sorts
through an aba-avoiding stack. Similarly, we define a permutation π to be minimally-sorted with respect to sT
if ordsT (Sn) = ordsT ({π}), antithetical to Defant’s notion of highly-sorted permutations. At the end of this
work, we present two conjectures on Mn, the minimally-sorted permutations with respect to s123,132.

In 2021, Berlow [5] studied the periodic points of s123,132. She defined a permutation π of length n to be
half-decreasing if the subsequence πn−1πn−3 · · ·π(3−(n mod 2)) is the identity of length bn−12 c. In particular, being
order-isomorphic to the identity is not sufficient.

Theorem 1.1 (Berlow [5]). A permutation π is periodic under s123,132 if and only if π is half-decreasing.

Our main result is that we find the exact value of ords123,132(Sn), extending Berlow’s work on periodic
permutations. An analogous result for s321,312 follows directly from Theorem 1.2.

Theorem 1.2. For all positive integers n, we have ords123,132(Sn) = 2bn−12 c.

2. Preliminaries

We say that a ∈ A is periodic under f : A → B if there exists a positive integer k such that fk(a) = a. For
some ordered set T, we use Ti to denote the ith element of T.

Let [n] denote {1, 2, · · · , n} for positive integers n. A permutation, written π = π1π2 · · ·πn, is an ordering
of distinct positive integers with length len(π) = n. We say that π1, π2, · · · , πn are the elements of π, and
use π[i:j] to denote the subpermutation πi, πi+1, · · · , πj . We define indπ(i), the index of i in π, to be j, where
πj = i. Let Sn be the set of permutations with elements [n]. The reduction of a permutation π (equivalently, the
standardization [12]), is the unique permutation red(π) ∈ Sn such that red(π)i = j for 1 ≤ i ≤ n, where πi is the
jth smallest number in {π1, π2, · · · , πn}. Two permutations π and σ are order-isomorphic if red(π) = red(σ), and
we write π ∼= σ. For instance, π = 57816 and σ = 48917 are order-isomorphic, since red(π) = red(σ) = 24513.
Given permutations π and σ, we say that π contains the pattern σ if there exists a sequence of positive integers
a1 < a2 < · · · < ak such that π′ = πa1πa2 · · ·πak ∼= σ. Otherwise, we say that π avoids σ (equivalently, is
σ-avoiding). For instance, π = 24513 contains σ = 132 since π1π3π5 = 253 ∼= σ, but avoids τ = 321. We use
π · τ to denote the concatenation of π and τ, and let rev(π) denote the reverse of π, namely πnπn−1 · · ·π1.
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Next, an element πi of π ∈ Sn is small if πi ≤ bn−12 c. An element πi is a left-to-right minimum (equivalently,
ltr-min) of π if πi = min(π[1:i]). Additionally, we say that πi is a valley if πi is a ltr-min, πi+1 (if i+ 1 ≤ n) is
not a ltr-min, and πi+2 (if i + 2 ≤ n) is a ltr-min. A consecutive subsequence of elements π[i:i+j] is a valley-
block v if πi+j is a valley and red(π[1:i+j])[i:i+j] = j + 1, j, · · · , 1. We say that the valley-boundary of π ∈ Sn,
denoted B(π), is the smallest index i such that π[i:n] = v1πa1v2πa2 · · · vjπaj for valleys v1, · · · , vj and elements
πa1 , · · · , πaj , and set B(π) = n if no such index exists. The valley-region of π is π[B(π):n]. For instance, given
π = (11, 12, 7, 5, 8, 4, 3, 6, 2, 9, 1, 10), the elements 1, 2, 3, and 5 are valleys and the sets (7, 5), (4, 3), (2), (1) form
4 valley-blocks in π. Finally, B(π) = 3, since π[3:n] = 7, 5, 8, 4, 3, 6, 2, 9, 1, 10.

We conclude by noting that permutation indices will be considered modulo n for the duration of this paper.
In particular, let πi := πj , where j is the unique element of [n] such that i ≡ j (mod n).

3. Proof of the Main Result

We preface this section with two propositions, immediate from the preliminaries.

Proposition 3.1. Given σ, τ ∈ S3, it holds that (sσ,τ (π))n = π1 for all π ∈ Sn and n ≥ 1.

Proposition 3.2. Let v1, · · · , vi be the valley-blocks of π from left to right, and let len(vj) = lj for all j. Then,
the permutation v1 · v2 · · · · vi is the reverse of the identity of length

∑
li.

We now begin the proof of Theorem 1.2 with several auxiliary lemmas that demonstrate the monovariant
movement of valley-blocks under s123,132.

Lemma 3.1. For any π ∈ Sn and ltr-min πi with i > 1, let j ≤ n be the largest index such that πi = min(π[1:j]).
It holds that s123,132(π)j−1 = πi.

Proof. Since πi is a ltr-min, just before πi enters the stack, π1 must be the only element in the stack. After the
elements π[i+1:j] have all entered the stack, πi and π1 necessarily remain in the stack since πi+1, · · · , πj > πi.
Additionally, since πj+1 < πi, just before πj+1 enters the stack, πj must exit the stack. At this moment,
the j − 1 elements π2, π3, · · · , πj have been the only elements to exit the stack, with πi being the last, so
s123,132(π)j−1 = πi.

Lemma 3.2. Given a valley-block v̄ = π[i:i+j] of π, we have s123,132(π)i+j = πi+j and s123,132(π)k−1 = πk for
i ≤ k < i+ j.

Proof. Just before πi enters the stack, π1 must be the only element in the stack. Since v consists of the j + 1
smallest elements of π[1:i+j] in descending-order, just before any element of v enters the stack, the previous
element must exit. Hence, k− 2 elements exit before πk for i ≤ k < i+ j, and thus s123,132(π)k−1 = πk. Finally,
by Lemma 3.1, πi+j is a fixed point.

Next, we show that s123,132 preserves the elements in the valley-region of π.

Lemma 3.3. Suppose π[i:j] and π[j+2:k] are two valley-blocks of π. Then, s123,132(π)j−1 = πj+1.

Proof. Right before πj enters the stack, the only element remaining must be π1. Now, since πj+1 > πj , the
stack will read πj+1πjπ1 top to bottom just after πj+1 enters. Finally, since πj+2 is also a ltr-min, just before
it enters, πj+1 and πj must have left the stack. Hence, every element in π[1:j] exits the stack before πj+1 except
π1 and πj , yielding s(π)j−1 = πj+1.

Lemma 3.4. If πi is in the valley-region of π, then πi is also in the valley-region of s123,132(π).

Proof. Let π[B(π):n] = v1πa1v2 · · · vjπaj , the valley-region of π, and let len(vi) = li for 1 ≤ i ≤ j. Then, by
Lemma 3.1 and Lemma 3.2, we have that s123,132(π) ends with the suffix

(v1[1:l1−1]) · πb1 · (v1[l1] · v2[1:l2−1]) · πb2 · (v2[l2] · v3[1:l3−1]) · · · (vj−1[lj−1]
· vj [1]) · πbj−1 · (vj [lj ]) · πbj

for some elements πb1 , πb2 , · · · , πbj . By Proposition 3.2, this suffix is of the form w1πbc1 · · ·wkπbck , where
πbc1 , · · · , πbck are the elements of {πb1 , · · · , πbj} that are not ltr-mins. Hence, this suffix is fully contained
in the valley-region of s123,132(π). However, it also contains all the elements in valley-blocks in π[B(π):n], and all
the elements in between valley-blocks in π[B(π):n] by Lemma 3.3, which fully encompass all of elements in the
valley-block, finishing the proof.

Lemma 3.5. Let πi = min(π[1:B(π)−1]). If πi is small, then πi is in the valley-region of s123,132(π).
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Proof. If i = 1, then the claim follows from Proposition 3.1. Otherwise, just before πi enters the stack, π1 must be
the only element remaining in the stack, since πi is a ltr-minimum. Then, after πi+1, · · · , πB(π)−1 have all entered
the stack, πi will remain in the stack. However, when πB(π) enters the stack, πi will necessarily leave, since πB
is part of a valley-block to the right of πi, so πB(π) < πi. Thus, since every other element in π1, · · · , πB(π)−1
was popped out before πi, except for π1, we have s(π)B(π)−2 = πi. However, since πi = min(π1, · · · , πB(π)−1),
the proof of Lemma 3.4 shows that πi is in the valley-region of s123,132(π).

By Lemma 3.4, elements never leave the valley-region, and by Lemma 3.5, a small element is always added
to the valley-region every iteration, implying the following result.

Corollary 3.1. For any π ∈ sb
n−1
2 c

123,132(Sn), it holds that i ≥ B(π) for all small elements πi.

Corollary 3.1 gives a characterization of the bn−12 c-sorted permutations under a s123,132 map. We continue
by showing that these permutations become periodic with at most bn−12 c further passes.

Lemma 3.6. For π ∈ Sn and small element i, if πn−2i+2 = i and i is in the valley-region of π, then
s123,132(π)n−2i+1 = i.

Proof. Suppose for the sake of contradiction that πn−2i+2 is directly in between two valley-blocks, so that
π[j:n−2i+1] is a valley-block for some j ≤ n − 2i. By definition, πn−2i+1 is a valley, and by Lemma 3.1,

sk(π)n−2i+1 = πn−2i+1 for all k. But this contradicts Theorem 1.1, since we have sk(π)n−2i+1 6= πn−2i+2 = i.
Now, suppose that πn−2i+2 is itself a valley. This similarly contradicts Theorem 1.1, since we have sk(π)n−2i+2 =
πn−2i+2 for all k by Lemma 3.1.

Since πn−2i+2 is in the valley-region of π, the only remaining possibility is that πn−2i+2 is part of a valley-
block but not a valley. Hence, by Lemma 3.4, we have s123,132(π)n−2i+1 = i, as desired.

Lemma 3.7. For some positive integer i ≤ bn−12 c and π ∈ Sn, let σ = s
i+bn−1

2 c
123,132 (π). Then, the permutation

σn−1σn−3 · · ·σn−2i+1 is the identity of length i.

Proof. We induct on i. The base case i = 1 is immediate—in particular, s
bn−1

2 c
123,132(π)n−1 = 1, which becomes a

fixed element by Lemma 3.1, since otherwise B(π) = n which contradicts Corollary 3.1.
Now suppose that for some 1 < j ≤ bn−12 c, it holds that for all π and i < j, the permutation σn−1σn−3 · · ·σn−2i+1

is the identity of length i, where σ = s
i+bn−1

2 c
123,132 (π). First, we note that by Lemma 3.2 and Lemma 3.3, if an

element πi is in the valley-region of π, we have s123,132(π)x = πi for some x ∈ {i − 2, i − 1, i}. Next, consider
some π ∈ Sn, and let

Z =

{
indsk123,132(π)(j)

∣∣∣∣ ⌊n− 1

2

⌋
≤ k ≤

⌊
n− 1

2

⌋
+ j

}
.

By Lemma 3.1, if Zl − Zl+1 = 0 for some l ≤ j, we must have s
bn−1

2 c+l
123,132 (π)n−2j+1 = j, or equivalently Zl ≤

n− 2j + 1. Similarly, if Zl − Zl+1 = 1, we have by Lemma 3.2 and Lemma 3.3 that the element j must be in a

valley-block (but not a valley) of s
bn−1

2 c+l−1
123,132 (π), so by the inductive hypothesis, Zl ≤ n− j − l + 2. Otherwise,

Zl − Zl+1 = 2, so we conclude recursively that Zj+1 ≤ n− 2j + 1. But combining Lemma 3.1, Lemma 3.6, and

the fact that Zl−Zl+1 ≤ 2 for all l, we derive Zj+1 = n− 2j+ 1, or equivalently s
bn−1

2 c+j
123,132 (π)n−2j+1 = j. Hence,

for all π and i < j+ 1, the permutation σn−1σn−3 · · ·σn−2i+1 is the identity of length i, where σ = s
i+bn−1

2 c
123,132 (π),

completing the induction.

In particular, any π ∈ s2b
n−1
2 c

123,132(Sn) is half-decreasing, which implies the following by Theorem 1.1.

Corollary 3.2. For all positive integers n, we have ords123,132(Sn) ≤ 2bn−12 c.

Finally, we present a family of minimally-sorted permutations to show that precisely 2bn−12 c iterations are
required to sort all of Sn. Define

γn =

(
n+ 1

2
, 2, 3, · · · , n− 1

2
,
n+ 3

2
, · · · , n− 2, 1, n− 1, n

)
for odd n ≥ 5 and γn = γn−1 ·n for even n ≥ 6. It is immediate that ords123,132([n]) = 2bn−12 c for n ≤ 4. Hence,
we consider n ≥ 5. Let δn denote the permutation rev((γn)[2:n−3]) when n is odd and rev((γn)[2:n−4]) when n
is even.
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n γn
5 (3, 2, 1, 4, 5)
6 (3, 2, 1, 4, 5, 6)
7 (4, 2, 3, 5, 1, 6, 7)
8 (4, 2, 3, 5, 1, 6, 7, 8)
9 (5, 2, 3, 4, 6, 7, 1, 8, 9)

Table 1: The first few γn for n ≥ 5.

Lemma 3.8. For positive integers n ≥ 5 and k ≤ bn−12 c, we have sk123,132(γn)[1:n−2k−2] = (δn)[k:n−k−3] for

odd n and sk123,132(γn)[1:n−2k−3] = (δn)[k:n−k−4] for even n. Furthermore, ζn−1ζn−3 · · · ζn−2k+1 is the identity

permutation of length k, where ζ = sk123,132(γn).

Proof. We induct on k. For brevity, we will prove the lemma for when n is odd—the proof for even n is directly
analogous. For the base case k = 1, we have s123,132(γn)n = (γn)1 = n+1

2 by Proposition 3.1. Since (γn)[2:n−3]
is strictly increasing, these elements are popped out in reverse order just before 1 enters the stack. Hence,
s123,132(γn)[1:n−4] = δn = (δn)[1:n−4]. Finally, s123,132(γn)n−1 = 1 by Lemma 3.1, completing the base case.

Next, suppose sk123,132(γn)[1:n−2k−2] = (δn)[k:n−k−3] for some k and ζn−1ζn−3 · · · ζn−2k+1 is the identity

of length k where ζ = sk123,132(γn). By Proposition 3.1, we have sk+1
123,132(γn)n = sk123,132(γn)1, and since

sk123,132(γn)[1:n−2k−2] is strictly decreasing, it follows that these elements will exit the stack in the same or-

der, giving sk+1
123,132(γn)[1:n−2k−4] = (δn)[k+1:n−k−4] by the inductive hypothesis. Finally, by Lemma 3.1, we have

sk+1
123,132(γn)n−2k−1 = k + 1, completing the induction.

Lemma 3.9. For all positive integers n, we have ords123,132(Sn) ≥ 2bn−12 c.

Proof. It follows from Lemma 3.8 that s
bn−1

2 c−1
123,132 (γn)1 = bn−12 c. By Proposition 3.1 and Lemma 3.3, we have

indsk123,132(γn)(b
n−1
2 c) = n − 2(k − bn−12 c) for k ≥ bn−12 c. Hence, k = 2bn−12 c is the minimal k such that

sk123,132(γn) is half-decreasing, giving us the desired bound.

Finally, we conclude that exactly 2bn−12 c iterations are required to sort Sn.

Proof of Theorem 1.2. Corollary 3.2 and Lemma 3.9 directly imply ords123,132(Sn) = 2bn−12 c.

4. Future Directions

To study Defant’s notion of highly-sorted permutations and our newly-introduced notion of minimally-sorted
permutations, characterizing the periodic permutations under generalized stack-sorting maps is a prerequisite.
We state a conjecture on the periodic points of other sσ,τ stack-sorting maps for three pairs of (σ, τ), and restate
a conjecture from Berlow.

Conjecture 4.1. For (σ, τ) = (123, 213), (132, 312), (231, 321), the map sσ,τ is a bijection from Sn to itself,
and all permutations are periodic.

Conjecture 4.2 (Berlow [5]). For (σ, τ) = (213, 231), (132, 213), (231, 312), the only periodic points of sσ,τ are
the identity permutation and its inverse.

Recall that Mn is the set of minimally-sorted permutations under s123,132. We conjecture several properties
of elements in Mn. However, these conditions are not sufficient for n ≥ 7.

Conjecture 4.3. For π ∈Mn, the following conditions hold true:

• π1 ≥ bn+1
2 c.

• For odd n: πn−2 = 1 and πn−1, πn ≥ bn+1
2 c.

• For even n: πn−3 = 1 and πn−2, πn−1, πn ≥ bn+1
2 c.

Next, an enumerative conjecture on Mn, computationally verified for n ≤ 6.

Conjecture 4.4. For all positive integers n, we have |M2n| = (n+ 1)|M2n−1|.

Finally, we conclude with an enumerative conjecture on Sortt,n(123, 132), the set of length n permutations
that are t-stack-sortable under s123,132.
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Conjecture 4.5. For any positive integer t and n ≥ 2t+ 1, we have:

• |Sortt,n(123, 132)| = n+3
2 |Sortt,n−2(123, 132)| if n is odd.

• |Sortt,n(123, 132)| = n+4
2 |Sortt,n−2(123, 132)| if n is even.
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