
numerative
ombinatorics

pp
lic
at
io
ns

A Enumerative Combinatorics and Applications
ecajournal.haifa.ac.il

ECA 5:1 (2025) Article #S2R2
https://doi.org/10.54550/ECA2025V5S1R2

Results on Pattern Avoidance in Parking Functions

Jun Yan

Mathematics Institute, University of Warwick, Coventry, UK
Email: jun.yan@warwick.ac.uk

Received: May 7, 2024, Accepted: September 7, 2024, Published: September 20, 2024
The authors: Released under the CC BY-ND license (International 4.0)

Abstract: In this paper, we mainly study two notions of pattern avoidance in parking functions. First, for any
collection of length 3 patterns, we compute the number of parking functions of size n that avoid them under the
first notion. This is motivated by the recent work of Adeniran and Pudwell, who obtained analogous results
using a second notion of pattern avoidance. Then, we provide new purely bijective proofs for two of their results
and improve the formula of another one. Finally, we apply similar enumeration techniques to the work of Novelli
and Thibon on certain Hopf algebras of generalised parking functions and compute their graded dimensions.

Keywords: Parking functions; Pattern avoidance; Generating functions; Bijective proofs
2020 Mathematics Subject Classification: 05A15; 05A09; 05A19

1. Introduction

Let f : [n]→ [n] be a function. Suppose that n cars enter a one-way parking lot with n parking spots and
attempt to park one by one. For every i ∈ [n], the i-th car prefers the f(i)-th parking spot, and it drives straight
there. If the f(i)-th spot is still available, it parks there, otherwise, it continues down the parking lot and parks
at the first available spot, or exits without parking if no such spot exists. We say that f : [n]→ [n] is a parking
function of size n if all n cars can park successfully. See Figure 1 for an example.

It is well-known and easy to show that f : [n]→ [n] is a parking function if and only if at least i cars prefer
the first i parking spots for every i ∈ [n]. In other words, if and only if the following condition holds:

A for every i ∈ [n], |{j | f(j) ≤ i}| ≥ i.

There are several possible notions of pattern avoidance in parking functions. In [5], Jeĺınek and Mansour
borrow the notion of pattern avoidance in words by viewing each parking function f : [n]→ [n] as a word of
length n on the alphabet [n]. The two notions we study in this paper are both motivated by the well-known
notion of pattern avoidance in permutations. For m ≤ n and σ ∈ Sm, π ∈ Sn, we say that π contains σ as a
pattern if there exists 1 ≤ i1 < · · · < im ≤ n, such that π(ia) < π(ib) if and only if σ(a) < σ(b) for all a, b ∈ [m],
and we say π avoids σ otherwise. For any collection σ1, · · · , σk of permutations, we denote by Avn(σ1, · · · , σk)
the set of all permutations in Sn containing none of σ1, · · · , σk as a pattern. Different ways of associating
permutations to parking functions give rise to different notions of pattern avoidance in parking functions. We
study two of them in this paper.

The first such notion looks at the final parking positions. For a parking function f : [n]→ [n], the parking
permutation associated to f is defined to be the permutation ρf ∈ Sn satisfying that the i-th spot in the parking
lot is occupied by the ρf (i)-th car. See Figure 1 for an example. Note that different parking functions could
have the same associated parking permutation.

For a collection σ1, · · · , σk of permutations, let Pkn(σ1, · · · , σk) be the set of parking functions f : [n]→ [n]
such that its associated parking permutation ρf contains none of σ1, · · · , σk as a pattern, or equivalently,
Pkn(σ1, · · · , σk) = {f : [n] → [n] | f is a parking function and ρf ∈ Avn(σ1, · · · , σk)}. Let pkn(σ1, · · · , σk) =
|Pfn(σ1, · · · , σk)|.

In Section 2 we systematically compute the values of pkn(σ1, · · · , σk) for all collections σ1, · · · , σk of
permutations in S3. Moreover, the formulas we prove are all explicit and non-recursive, except for pkn(σ) when
σ ∈ {132, 231, 312, 321}, which are more difficult. This section is motivated by the work of Adeniran and Pudwell
in [1], where they obtained analogous results using a different notion of pattern avoidance in parking functions
that we define now.

https://doi.org/10.54550/ECA2025V5S1R2

Jun Yan

A parking function f : [7]→ [7]
i 1 2 3 4 5 6 7

f(i) 4 4 6 4 2 2 1

The parking positions of f 7 5 6 1 2 3 4

The parking permutation ρf associated to f ρf = 7561234

f in block notation ({7}, {5, 6}, ∅, {1, 2, 4}, ∅, {3}, ∅)

The block permutation πf associated to f πf = 7561243

Figure 1: An example parking function f : [7]→ [7] illustrating relevant concepts. Note that ρf contains 312 as
a pattern, but avoids 132, while πf contains 132 as a pattern, but avoids 213.

This second notion is introduced by Qiu and Remmel [9, 10], and is motivated by their work on pattern
avoidance in ordered set partitions. A parking function f : [n] → [n] is represented in block notation by a
sequence of n sets (B1, · · · , Bn), each called a block, where Bi = f−1(i) for all i ∈ [n]. This block notation of
parking functions is introduced by Adeniran and Pudwell [1], and is a simpler form of the labelled Catalan path
notation introduced by Garsia and Haiman [3]. See Figure 1 for an example. Note that by A, a sequence of n
disjoint subsets (B1, · · · , Bn) of [n] satisfying ∪nj=1Bi = [n] is a parking function represented in block notation if
and only if the following holds:

B for every i ∈ [n], | ∪ij=1 Bi| ≥ i.

Given a parking function f : [n]→ [n] represented in block notation by (B1, · · · , Bn), write down the elements
in B1, · · · , Bn in this order, where for each Bi with size at least 2, we write the elements in Bi down in increasing
order. In this way, we obtain a permutation πf ∈ Sn, where πf (i) is the i-th element written down, and we call
πf the block permutation associated to f . See Figure 1 for an example. Note that again, the same permutation
could be the block permutation associated to several distinct parking functions.

For a collection σ1, · · · , σk of permutations, let Pfn(σ1, · · · , σk) be the set of parking function f : [n] →
[n] such that its associated block permutation πf contains none of σ1, · · · , σk as a pattern, or equivalently,
Pfn(σ1, · · · , σk) = {f : [n] → [n] | f is a parking function and πf ∈ Avn(σ1, · · · , σk)}. Let pfn(σ1, · · · , σk) =
|Pfn(σ1, · · · , σk)|.

As an example, pfn(12) = 1 as the only parking function in Pfn(12) is the one with block notation
({n}, {n− 1}, · · · , {1}). It is also relatively easy to see that pfn(21) = Cn, the n-th Catalan number. Indeed,
the block permutation associated to any parking function in Pfn(21) must be the identity, and given a parking
function in Pfn(21) with block notation B1, B2, · · · , Bn, if from left to right we draw an up-step for every element
encountered in the blocks, and draw a down-step every time we reach the end of a set Bi, then condition B
implies that this gives a bijection with the set Cn of Catalan paths of length 2n. Since parking functions in
Pfn(21) are exactly the size n parking functions that are increasing, this also gives a bijection between size n
parking functions and the Catalan paths of length 2n, which we will use later.

The first non-trivial result under this notion of pattern avoidance is due to Qiu and Remmel [9], who computed
the values of pfn(123). Adeniran and Pudwell [1] systematically computed all values of pfn(σ1, · · · , σk), where
σ1, · · · , σk is any collection of at least two permutations in S3. The values of pfn(σ) for σ ∈ S3 \ {123} remains
open. Two of the results proven by Adeniran and Pudwell [1] are as follows.

Theorem 1.1. pfn(123, 132) is equal to the number of ordered rooted trees with n+ 1 edges and odd root degrees.

Theorem 1.2. pfn(123, 213) = Cn+1−Cn, which is equal to the number of ordered rooted trees with n+ 1 edges
and root degrees at least 2.

The proofs of these two results in [1] are both algebraic, specifically by setting up and solving recurrence
relations using generating function or computer-assisted induction. In view of the simple combinatorial interpre-
tation of the numbers pfn(123, 132) and pfn(123, 213), and the many known bijections between parking functions
and other combinatorial objects [6, 11], Adeniran and Pudwell [1] posed the question of finding purely bijective
proofs of these two results. We answer this question by presenting bijective proofs of these two results in Section
3.1 and 3.2, respectively.

Finally, we apply similar algebraic techniques as the ones employed in the more difficult cases in Section 2 to
some related enumeration problems on parking functions. We first improve a result of Adeniran and Pudwell
in [1] by proving a more explicit formula for pfn(312, 321) in Section 3.3. Then, in Section 4, building on the
work of Novelli and Thibon in [8], we provide several new formulas on the graded dimensions of certain Hopf
algebras of generalised parking functions, which is also the number of congruence classes of generalised parking
functions under certain congruence relations. In the process, we confirm several conjectures.

ECA 5:1 (2025) Article #S2R2 2

Jun Yan

2. Pattern avoidance in parking permutations

In this section, analogous to the work by Adeniran and Pudwell [1] on enumerating parking functions whose
block permutations avoid certain length 3 patterns, we systematically compute pkn(σ1, · · · , σk), the number of
parking functions whose parking permutations avoid a certain collection σ1, · · · , σk of permutations in S3. Under
this notion of pattern avoidance, determining pkn(σ1, · · · , σk) is in general slightly easier due to the following
lemma, a proof of which can be found in [2], and its immediate corollary.

Lemma 2.1. For any ρ ∈ Sn and i ∈ [n], let `(i, ρ) = max{` | ρ(j) ≤ ρ(i) for all i − ` + 1 ≤ j ≤ i}, and let
`(ρ) =

∏n
i=1 `(i, ρ). Then, the number of parking function f : [n]→ [n] with ρf = ρ is `(ρ).

Corollary 2.1.

pkn(σ1, · · · , σk) =
∑

ρ∈Avn(σ1,··· ,σk)

`(ρ) =
∑

ρ∈Avn(σ1,··· ,σk)

n∏
i=1

`(i, ρ).

Most of the proofs below directly apply Corollary 2.1 to the descriptions of permutation in Avn(σ1, · · · , σk)
given by Adeniran and Pudwell [1]. As such, we now introduce several notations they used to describe
permutations. We denote the identity permutation by In, and denote the permutation σ ∈ Sn satisfying
σ(i) = n+ 1− i for all i ∈ [n] by Jn. For permutations σ ∈ Sn, τ ∈ Sm, we define the direct sum σ ⊕ τ and skew
sum σ 	 τ to be the permutations in Sn+m given as follows.

(σ ⊕ τ)i =

{
σi, 1 ≤ i ≤ n,
τi−n + n, n+ 1 ≤ i ≤ n+m.

(σ 	 τ)i =

{
σi +m, 1 ≤ i ≤ n,
τi−n, n+ 1 ≤ i ≤ n+m.

For S ⊂ [n], we also define IS to be the elements of S listed in increasing order, and JS to be the elements of S
listed in decreasing order. If several lists of elements partitioning [n] are written directly next to one another,
then that denotes the permutation in Sn obtained by concatenating these lists. For example, I{2,5}6J{1,3,4}
denotes the permutation σ = 256431 ∈ S6.

As two examples, by Corollary 2.1, pkn(12) = 1 as Avn(12) = {Jn} and `(Jn) =
∏n
i=1 `(i, Jn) =

∏n
i=1 1 = 1,

while pkn(21) = n! as Avn(21) = {In} and `(In) =
∏n
i=1 `(i, In) =

∏n
i=1 i = n!

Note that by the Erdős-Szekeres Theorem, any permutation containing neither 123 nor 321 as a pattern must
have length at most 4, so in the computations below we will only consider collections σ1, · · · , σk that do not
contain 123 and 321 together. We also follow the convention that Av0(σ1, · · · , σk) has size 1 and contains the
unique empty permutation, and pk0(σ1, · · · , σk) = 1.

Finally, in some of the more difficult cases below that require the use of generating functions, we use [xn]F (x)
to denote the coefficient of the term xn in the formal power series F (x).

2.1 Avoiding five patterns

Patterns σ1, σ2, σ3, σ4, σ5 pkn(σ1, σ2, σ3, σ4, σ5), 1 ≤ n ≤ 8 OEIS Result
123, 132, 213, 231, 312 1, 3, 1, 1, 1, 1, 1, 1 A000012 (except n = 2) Theorem 2.1
132, 213, 231, 312, 321 1, 3, 6, 24, 120, 720, 5040, 40320 A338112 Theorem 2.2

Theorem 2.1.

pkn(123, 132, 213, 231, 312) =

{
1, if n 6= 2,

3, otherwise.

Proof. The cases when n = 1, 2 are easy to verify, so we assume n ≥ 3. By Theorem 1 in [1], Jn is the only
permutation in Avn(123, 132, 213, 231, 312). Thus, pkn(123, 132, 213, 231, 312) = `(Jn) = 1.

Theorem 2.2.

pkn(132, 213, 231, 312, 321) =

{
n!, if n 6= 2,

3, otherwise.

Proof. The cases when n = 1, 2 are easy to verify, so we assume n ≥ 3. By Theorem 2 in [1], In is the only
permutation in Avn(132, 213, 231, 312, 321). Thus, pkn(123, 132, 213, 231, 312) = `(In) = n!.

ECA 5:1 (2025) Article #S2R2 3

Jun Yan

2.2 Avoiding four patterns

Patterns σ1, σ2, σ3, σ4 pkn(σ1, σ2, σ3, σ4), 1 ≤ n ≤ 8 OEIS Result
123, 132, 213, 231

1, 3, 3, 3, 3, 3, 3, 3 A122553 Theorem 2.3123, 132, 213, 312
123, 213, 231, 312
123, 132, 231, 312 1, 3, 4, 5, 6, 7, 8, 9 A065475 Theorem 2.4
132, 213, 231, 312 1, 3, 7, 25, 121, 721, 5041, 40321 A038507 (except n = 1) Theorem 2.5
132, 213, 231, 321

1, 3, 8, 30, 144, 840, 5760, 45360 A059171 Theorem 2.6132, 213, 312, 321
213, 231, 312, 321
132, 231, 312, 321 1, 3, 9, 36, 180, 1080, 7560, 60480 A070960 Theorem 2.7

Theorem 2.3.

pkn(123, 132, 213, 231) = pkn(123, 132, 213, 312) = pkn(123, 213, 231, 312) =

{
3, if n 6= 1,

1, otherwise.

Proof. The cases when n = 1 are clear, so we assume n ≥ 2 from now on.
By Theorem 3 in [1], Avn(123, 132, 213, 231) = {Jn, Jn−2	 I2}, so pkn(123, 132, 213, 231) = `(Jn) + `(Jn−2	

I2) = 1 + 2 = 3.
By Theorem 4 in [1], Avn(123, 132, 213, 312) = {Jn, I2 	 Jn−2}, so pkn(123, 132, 213, 312) = `(Jn) + `(I2 	

Jn−2) = 1 + 2 = 3.
By Theorem 4 in [1], Avn(123, 213, 231, 312) = {Jn, 1 ⊕ Jn−1}, so pkn(123, 213, 231, 312) = `(Jn) + `(1 ⊕

Jn−1) = 1 + 2 = 3.

Theorem 2.4.

pkn(123, 132, 231, 312) =

{
n+ 1, if n 6= 1,

1, otherwise.

Proof. The case when n = 1 is clear. For n ≥ 2, by Theorem 3 in [1], Avn(123, 132, 231, 312) = {Jn, Jn−1 ⊕ 1},
so pkn(123, 132, 231, 312) = `(Jn) + `(Jn−1 ⊕ 1) = 1 + n.

Theorem 2.5.

pkn(132, 213, 231, 312) =

{
n! + 1, if n 6= 1,

1, if n = 1.

Proof. The case when n = 1 is clear. For n ≥ 3, by Theorem 5 in [1], Avn(132, 213, 231, 312) = {In, Jn}, so
pkn(132, 213, 231, 312) = `(In) + `(Jn) = n! + 1.

Theorem 2.6.

pkn(132, 213, 231, 321) = pkn(132, 213, 312, 321) = pkn(213, 231, 312, 321) =

{
(n+1)!
n , if n 6= 1,

1, otherwise.

Proof. The cases when n = 1 are clear, so we assume n ≥ 2 from now on.
By Theorem 6 in [1], Avn(132, 213, 231, 321) = {In, 1	In−1}, so pkn(132, 213, 231, 321) = `(In)+`(1	In−1) =

n! + (n− 1)! = (n+1)!
n .

By Theorem 7 in [1], Avn(132, 213, 312, 321) = {In, In−1	1}, so pkn(132, 213, 312, 321) = `(In)+`(In−1	1) =

n! + (n− 1)! = (n+1)!
n .

By Theorem 7 in [1], Avn(213, 231, 312, 321) = {In, In−2 ⊕ J2}, so pkn(213, 231, 312, 321) = `(Jn) + `(In−2 ⊕
J2) = n! + (n− 1)! = (n+1)!

n .

Theorem 2.7.

pkn(132, 231, 312, 321) =

{
3
2n!, if n 6= 1,

1, if n = 1,

Proof. The case when n = 1 is clear. For n ≥ 2, by Theorem 6 in [1], Avn(132, 231, 312, 321) = {In, J2 ⊕ In−2},
so pkn(132, 231, 312, 321) = `(In) + `(J2 ⊕ In−2) = n! + 1

2n!.

ECA 5:1 (2025) Article #S2R2 4

Jun Yan

2.3 Avoiding three patterns

Patterns σ1, σ2, σ3 pkn(σ1, σ2, σ3), 1 ≤ n ≤ 8 OEIS Result
123, 132, 231

1, 3, 6, 10, 15, 21, 28, 36 A000217 Theorem 2.8123, 132, 312
123, 231, 312
123, 213, 231

1, 3, 5, 7, 9, 11, 13, 15 A005408 Theorem 2.9
123, 213, 312
123, 132, 213 1, 3, 5, 11, 21, 43, 85, 171 A001045 Theorem 2.10
132, 213, 231

1, 3, 9, 33, 153, 873, 5913, 46233 A007489 Theorem 2.11123, 213, 312
213, 231, 312
132, 231, 312 1, 3, 10, 41, 206, 1237, 8660, 69281 A002627 Theorem 2.12
132, 231, 321

1, 3, 11, 50, 274, 1764, 13068, 109584 A000254 Theorem 2.13
132, 312, 321
132, 213, 321

1, 3, 10, 40, 192, 1092, 7248, 55296 A136128 Theorem 2.14
213, 231, 321
213, 312, 321 1, 3, 10, 42, 216, 1320, 9360, 75600 A007680 Theorem 2.15
231, 312, 321 1, 3, 11, 53, 309, 2119, 16687, 148329 A000255 Theorem 2.16

Theorem 2.8. pkn(123, 132, 231) = pkn(123, 132, 312) = pkn(123, 231, 312) =
(
n+1
2

)
.

Proof. By Theorem 8 in [1], Avn(123, 132, 231) = {Jn−k 	 (Jk−1 ⊕ 1) | k ∈ [n]}, so pkn(123, 132, 231) =∑n
k=1 `(Jn−k 	 (Jk−1 ⊕ 1)) =

∑n
k=1 k =

(
n+1
2

)
.

By Theorem 9 in [1], Avn(123, 132, 312) = {(Jk−1 ⊕ 1) 	 Jn−k | k ∈ [n]}, so pkn(123, 132, 312) =∑n
k=1 `((Jk−1 ⊕ 1)	 Jn−k) =

∑n
k=1 k =

(
n+1
2

)
.

By Theorem 9 in [1], Avn(123, 231, 312) = {Jk⊕Jn−k | k ∈ [n]}, so pkn(123, 231, 312) =
∑n
k=1 `(Jk⊕Jn−k) =∑n−1

k=1(k + 1) + 1 =
(
n+1
2

)
.

Theorem 2.9. pkn(123, 213, 231) = pkn(123, 213, 312) = 2n− 1.

Proof. By Theorem 9 in [1], Avn(123, 213, 231) = {Jk−1 	 (1 ⊕ Jn−k) | k ∈ [n]}, so pkn(123, 213, 231) =∑n
k=1 `(Jk−1 	 (1⊕ Jn−k)) =

∑n−1
k=1 2 + 1 = 2n− 1.

By Theorem 10 in [1], Avn(123, 213, 312) = {(1⊕Jn−k)	Jk−1 | k ∈ [n]}, so pkn(123, 213, 312) =
∑n
k=1 `((1⊕

Jn−k)	 Jk−1) =
∑n−1
k=1 2 + 1 = 2n− 1.

Theorem 2.10. pkn(123, 132, 213) = 2
32n + 1

3 (−1)n.

Proof. The cases when n = 1, 2 are easy to verify, so assume n ≥ 3. By Theorem 11 in [1], Avn(123, 132, 213) =
{1	 σ | σ ∈ Avn−1(123, 132, 213)} ∪ {12	 σ | σ ∈ Avn−2(123, 132, 213)}, so

pkn(123, 132, 213) =
∑

σ∈Avn(123,132,213)

`(σ)

=
∑

σ∈Avn−1(123,132,213)

`(1	 σ) +
∑

σ∈Avn−2(123,132,213)

`(12	 σ)

=
∑

σ∈Avn−1(123,132,213)

`(σ) +
∑

σ∈Avn−2(123,132,213)

2`(σ)

= pkn−1(123, 132, 213) + 2 pkn−2(123, 132, 213).

Solving this standard linear recurrence gives pkn(123, 132, 213) = 2
32n + 1

3 (−1)n.

Theorem 2.11. pkn(132, 213, 231) = pkn(132, 213, 312) = pkn(213, 231, 312) =
∑n
k=1 k!.

Proof. By Theorem 12 in [1], Avn(132, 213, 231) = {Jk−1 	 In−k+1 | k ∈ [n]}, so pkn(132, 213, 231) =∑n
k=1 `(Jk−1 	 In−k+1) =

∑n
k=1(n− k + 1)! =

∑n
k=1 k!.

By Theorem 13 in [1], Avn(132, 213, 312) = {Ik	Jn−k | k ∈ [n]}, so pkn(132, 213, 312) =
∑n
k=1 `(Ik	Jn−k) =∑n

k=1 k!.
By Theorem 13 in [1], Avn(213, 231, 312) = {Ik−1⊕Jn−k+1 | k ∈ [n]}, so pkn(213, 231, 312) =

∑n
k=1 `(Ik−1⊕

Jn−k+1) =
∑n
k=1 k!.

Theorem 2.12. pkn(132, 231, 312) =
∑n
k=1

n!
k! .

ECA 5:1 (2025) Article #S2R2 5

Jun Yan

Proof. By Theorem 12 in [1], Avn(132, 231, 312) = {Jk ⊕ In−k | k ∈ [n]}, so pkn(132, 231, 312) =
∑n
k=1 `(Jk ⊕

In−k) =
∑n
k=1

n!
k! .

Theorem 2.13. pkn(132, 231, 321) = pkn(132, 312, 321) =
∑n
k=1

n!
k .

Proof. By Theorem 14 in [1], Avn(132, 231, 321) = {(1 	 Ik−1) ⊕ In−k | k ∈ [n]}, so pkn(132, 231, 321) =∑n
k=1 `((1	 Ik−1)⊕ In−k) =

∑n
k=1

n!
k .

By Theorem 15 in [1], Avn(132, 312, 321) = {(Ik−1 	 1) ⊕ In−k | k ∈ [n]}, so pkn(132, 312, 321) =∑n
k=1 `((Ik−1 	 1)⊕ In−k) =

∑n
k=1

n!
k .

Theorem 2.14. pkn(132, 213, 321) = pkn(213, 231, 321) =
∑n
k=1 k!(n− k)!.

Proof. By Theorem 15 in [1], Avn(132, 213, 321) = {Ik 	 In−k | k ∈ [n]}, so pkn(132, 213, 321) =
∑n
k=1 `(Ik 	

In−k) =
∑n
k=1 k!(n− k)!.

By Theorem 15 in [1], Avn(213, 231, 321) = {Ik−1 ⊕ (1 	 In−k) | k ∈ [n]}, so pkn(213, 231, 321) =∑n
k=1 `(Ik−1 ⊕ (1	 In−k)) =

∑n
k=1 k!(n− k)!.

Theorem 2.15. pkn(213, 312, 321) = (2n− 1)(n− 1)!.

Proof. By Theorem 16 in [1], Avn(213, 312, 321) = {Ik−1 ⊕ (In−k 	 1) | k ∈ [n]}, so pkn(213, 312, 321) =∑n
k=1 `(Ik−1 ⊕ (In−k 	 1)) =

∑n−1
k=1(n− 1)! + n! = (2n− 1)(n− 1)!.

Theorem 2.16. pkn(231, 312, 321) =
∑n
k=0(−1)k n!k! (n− k + 1).

Proof. The cases when n = 1, 2 are easy to verify, so we assume n ≥ 3. By Theorem 17 in [1], Avn(231, 312, 321) =
{σ ⊕ 1 | σ ∈ Avn−1(231, 312, 321)} ∪ {σ ⊕ 21 | σ ∈ Avn−2(231, 312, 321)}, so

pkn(231, 312, 321) =
∑

σ∈Avn−1(231,312,321)

`(σ ⊕ 1) +
∑

σ∈Avn−2(231,312,321)

`(σ ⊕ 21)

= npkn−1(231, 312, 321) + (n− 1) pkn−2(231, 312, 321).

For brevity, let pn = pkn(231, 312, 321). Consider the exponential generating functions P (x) =
∑
n≥0 pn

xn

n! and

Q(x) =
∑
n≥0 pn

xn+2

n!(n+2) . Note that Q′(x) = xP (x). Moreover, from the recurrence relation above, we have

1

x
Q′(x) = P (x) = 1 + x+

∑
n≥2

pn
xn
n!

= 1 + x+
∑
n≥2

pn−1
xn

(n− 1)!
+
∑
n≥2

pn−2
xn

n(n− 2)!

= 1 + x+ x(P (x)− 1) +Q(x) = 1 +Q′(x) +Q(x).

Solving this differential equation and using Q(0) = 0, we get Q(x) = e−x(1− x)−1 − 1 and P (x) = 1
xQ
′(x) =

e−x(1− x)−2. Thus, pkn(231, 312, 321) = pn = n![xn]P (x) =
∑n
k=0(−1)k n!k! (n− k + 1).

2.4 Avoiding two patterns

Patterns σ1, σ2 pkn(σ1, σ2), 1 ≤ n ≤ 8 OEIS Result
123, 231

1, 3, 8, 17, 31, 51, 78, 113 A105163 Theorem 2.17
123, 312
123, 132 1, 3, 8, 21, 55, 144, 377, 987 A001906 Theorem 2.18
123, 213 1, 3, 7, 17, 41, 99, 239, 577 A001333 Theorem 2.19
132, 231

1, 3, 12, 60, 360, 2520, 20160, 181440 A001710 Theorem 2.20132, 312
231, 312
132, 213

1, 3, 11, 47, 231, 1303, 8431, 62391 A051296 Theorem 2.21
213, 231
132, 321 1, 3, 13, 68, 412, 2844, 22116, 191904 New Theorem 2.22
213, 321 1, 3, 12, 56, 300, 1836, 12768, 100224 New Theorem 2.23
213, 312 1, 3, 11, 49, 261, 1631, 11743, 95901 A001339 Theorem 2.24
231, 321 1, 3, 13, 71, 461, 3447, 29093, 273343 A003319 Theorem 2.25
312, 321 1, 3, 13, 73, 501, 4051, 37633, 394353 A000262 Theorem 2.26

Theorem 2.17. pkn(123, 231) = pkn(123, 312) = 1
6n(n− 1)(n+ 4) + 1.

ECA 5:1 (2025) Article #S2R2 6

Jun Yan

Proof. By Theorem 18 in [1], Avn(123, 231) = {Jn−a−b	(Ja⊕Jb) | a, b ≥ 1, a+b ≤ n}∪{Jn}, so pkn(123, 231) =∑n−1
a=1

∑n−a
b=1 `(Jn−a−b 	 (Ja ⊕ Jb)) + `(Jn) =

∑n−1
a=1

∑n−a
b=1 (a+ 1) + 1 = 1

6 (n− 1)n(n+ 4) + 1.
By Theorem 19 in [1], Avn(123, 312) = {(Ja ⊕ Jb)	 Jn−a−b | a, b ≥ 1, a+ b ≤ n} ∪ {Jn}, so pkn(123, 312) =∑n−1
a=1

∑n−a
b=1 `((Ja ⊕ Jb)	 Jn−a−b)) + `(Jn) =

∑n−1
a=1

∑n−a
b=1 (a+ 1) + 1 = 1

6 (n− 1)n(n+ 4) + 1.

Theorem 2.18. pkn(123, 132) = 1√
5
(3+
√
5

2)n − 1√
5
(3−
√
5

2)n.

Proof. By Theorem 20 in [1], Avn(123, 132) = {(Jk−1 ⊕ 1)	 σ | k ∈ [n], σ ∈ Avn−k(123, 132)}, so

pkn(123, 132) =

n∑
k=1

∑
σ∈Avn−k(123,132)

`((Jk−1 ⊕ 1)	 σ)

=

n∑
k=1

∑
σ∈Avn−k(123,132)

k`(σ) =

n∑
k=1

k pkn−k(123, 132).

Let pn = pkn(123, 132) and consider the generating function P (x) =
∑
n≥0 pnx

n. The recurrence relation

above implies that P (x) = 1 +
∑
n≥1

∑n
k=1 kpn−kx

n = 1 +
∑
k≥1 kx

k
∑
n≥k pn−kx

n−k = 1 + x
(1−x)2P (x). Thus,

P (x) = (1−x)2
1−3x+x2 = 1 + x

x2−3x+1 . It follows that for n ≥ 1, pkn(123, 132) = pn = [xn−1](x2 − 3x + 1)−1 =
1√
5
(3+
√
5

2)n − 1√
5
(3−
√
5

2)n.

Theorem 2.19. pkn(123, 213) = 1
2 (1−

√
2)n + 1

2 (1 +
√

2)n.

Proof. By Theorem 21 in [1], Avn(123, 213) = {σ 	 (1⊕ Jk−1) | k ∈ [n], σ ∈ Avn−k(123, 213)}, so

pkn(123, 213) =

n∑
k=1

∑
σ∈Avn−k(123,213)

`(σ 	 (1⊕ Jk−1))

=
∑

σ∈Avn−1(123,213)

`(σ) +

n∑
k=2

∑
σ∈Avn−k(123,213)

2`(σ)

= pkn−1(123, 213) +

n∑
k=2

2 pkn−k(123, 213).

Let pn = pkn(123, 213), it follows that for n ≥ 2

pn+1 = pn +

n+1∑
k=2

pn+1−k = pn + 2pn−1 +

n∑
k=2

2pn−k

= pn + 2pn−1 + pn − pn−1 = 2pn + pn−1.

Solving this standard linear recurrence using the easily verified initial conditions p1 = 1, p2 = 3 gives
pkn(123, 213) = pn = 1

2 (1−
√

2)n + 1
2 (1 +

√
2)n.

Theorem 2.20. pkn(132, 231) = pkn(132, 312) = pkn(231, 312) = 1
2 (n+ 1)!.

Proof. By Theorem 22 in [1], Avn(132, 231) = {J[n]\(S∪{1})1IS | S ⊂ [n] \ {1}}, so

pkn(132, 231) =
∑

S⊂[n]\{1}

`(J[n]\(S∪{1})1IS) =
∑

S⊂[n]\{1}

∏
i∈S

i =

n∏
i=2

(1 + i) =
1

2
(n+ 1)!.

By Theorem 23 in [1], Avn(132, 312) = {(σ ⊕ 1)	 Jk−1 | k ∈ [n], σ ∈ Avn−k(132, 312)}, so

pkn(132, 312) =

n∑
k=1

∑
σ∈Avn−k(132,312)

`((σ ⊕ 1)	 Jk−1) =

n∑
k=1

∑
σ∈Avn−k(132,312)

(n− k + 1)`(σ)

=

n∑
k=1

(n− k + 1) pkn−k(132, 312) =

n−1∑
k=0

(k + 1) pkk(132, 312).

It follows that pkn+1(132, 312) − pkn(132, 312) = (n + 1) pkn(132, 312) for n ≥ 1, so pkn+1(132, 312) =
(n+ 2) pkn(132, 312). An easy induction gives pkn(132, 312) = 1

2 (n+ 1)!.

ECA 5:1 (2025) Article #S2R2 7

Jun Yan

By Theorem 23 in [1], Avn(231, 312) = {σ ⊕ Jk | k ∈ [n], σ ∈ Avn−k(231, 312)}, so

pkn(231, 312) =

n∑
k=1

∑
σ∈Avn−k(231,312)

`(σ ⊕ Jk) =

n∑
k=1

∑
σ∈Avn−k(231,312)

(n− k + 1)`(σ)

=

n∑
k=1

(n− k + 1) pkn−k(231, 312) =

n−1∑
k=0

(k + 1) pkk(231, 312).

Since this is the same recurrence relation as the case above, and it is easy to verify the initial values match, we
have pkn(231, 312) = 1

2 (n+ 1)! as well.

Theorem 2.21.

pkn(132, 213) = pkn(213, 231) =

n∑
k=1

∑
a1+···ak=n
a1,··· ,ak≥1

a1! · · · ak!.

Proof. By Theorem 23 in [1], Avn(132, 213) = {Ik 	 σ | k ∈ [n], σ ∈ Avn−k(132, 213)}, so

pkn(132, 213) =

n∑
k=1

∑
σ∈Avn−k(132,213)

`(Ik 	 σ)

=

n∑
k=1

∑
σ∈Avn−k(132,213)

k!`(σ) =

n∑
k=1

k! pkn−k(132, 213).

The result then follows from induction on n.
By Theorem 23 in [1], Avn(213, 231) = {Ik−1 ⊕ (1	 σ) | k ∈ [n], σ ∈ Avn−k(213, 231)}, so

pkn(213, 231) =

n∑
k=1

∑
σ∈Avn−k(213,231)

`(Ik−1 ⊕ (1	 σ))

=

n∑
k=1

∑
σ∈Avn−k(213,231)

k!`(σ) =

n∑
k=1

k! pkn−k(213, 231).

Again, the result follows from induction on n.

Theorem 2.22.

pkn(132, 321) = n! +
∑

a+b≤n
a,b≥1

n!(
a+b
a

) .
Proof. By Theorem 24 in [1], Avn(132, 321) = {In} ∪ {(Ia 	 Ib)⊕ In−a−b | a, b ≥ 1, a+ b ≤ n}, so

pkn(132, 321) = `(In) +

n−1∑
a=1

n−a∑
b=1

`((Ia 	 Ib)⊕ In−a−b)

= n! +
n−1∑
a=1

n−a∑
b=1

a!b!
n!

(a+ b)!
= n! +

n−1∑
a=1

n−a∑
b=1

n!(
a+b
a

) ,
as required.

Theorem 2.23.

pkn(213, 321) = n! + n!

n−1∑
k=1

k(
n
k

) .
Proof. By Theorem 25 in [1], Avn(213, 321) = {In} ∪ {In−a−b ⊕ (Ia 	 Ib) | a, b ≥ 1, a+ b ≤ n}, so

pkn(213, 321) = `(In) +

n−1∑
a=1

n−a∑
b=1

`(In−a−b ⊕ (Ia 	 Ib))

= n! +

n−1∑
a=1

n−a∑
b=1

(n− b)!b! = n! +

n−1∑
k=1

k(n− k)!k! = n! + n!

n−1∑
k=1

k(
n
k

) ,
as required.

ECA 5:1 (2025) Article #S2R2 8

Jun Yan

Theorem 2.24. pkn(213, 312) =
∑n−1
k=0

(
n−1
k

)
(k + 1)!.

Proof. By Theorem 26 in [1], Avn(213, 312) = {ISnJ[n−1]\S | S ⊂ [n− 1]}, so

pkn(213, 312) =
∑

S⊂[n−1]

`(ISnJ[n−1]\S) =
∑

S⊂[n−1]

(|S|+ 1)! =

n−1∑
k=0

(
n− 1

k

)
(k + 1)!,

as required.

Theorem 2.25.

pkn(231, 321) =

n+1∑
k=1

(−1)k+1
∑

a1+···+ak=n+1
a1,··· ,ak≥1

a1! · · · ak!.

Proof. By Theorem 27 in [1], Avn(231, 321) = {σ ⊕ (1	 Ik−1) | k ∈ [n], σ ∈ Avn−k(231, 321)}, so

pkn(231, 321) =

n∑
k=1

∑
σ∈Avn−k(231,321)

`(σ ⊕ (1	 Ik−1)) =

n∑
k=1

∑
σ∈Avn−k(231,321)

`(σ)(n− k + 1)(k − 1)!

=

n∑
k=1

pkn−k(231, 321)(n− k + 1)(k − 1)! =

n−1∑
k=0

pkk(231, 321)(k + 1)(n− k − 1)!.

For brevity, let pn = pkn(231, 321). We use induction on n to show that pn = (n+ 1)!−
∑n−1
k=0 pk(n− k)! for

all n ≥ 1. The case when n = 1 is easily verified. For n ≥ 2, by the recurrence relation above and induction
hypothesis, we have

pn +

n−1∑
k=0

pk(n− k)! =

n−1∑
k=0

pk(k + 1)(n− k − 1)! +

n−1∑
k=0

pk(n− k)!

=

n−1∑
k=0

pk(n− k − 1)!(k + 1 + n− k) = (n+ 1)

n−1∑
k=0

pk(n− k − 1)!

= (n+ 1)

(
pn−1 +

n−2∑
k=0

pk(n− k − 1)!

)
= (n+ 1)n! = (n+ 1)!,

as required. The result then follows from induction on n.

Theorem 2.26.

pkn(312, 321) = n!
n∑
k=1

(
n−1
k−1
)

k!
.

Proof. By Theorem 28 in [1], Avn(312, 321) = {σ ⊕ (Ik−1 	 1) | k ∈ [n], σ ∈ Avn−k(312, 321)}, so

pkn(312, 321) =

n∑
k=1

∑
σ∈Avn−k(312,321)

`(σ ⊕ (Ik−1 	 1))

=
∑

σ∈Avn−1(312,321)

n`(σ) +

n∑
k=2

∑
σ∈Avn−k(312,321)

`(σ)
(n− 1)!

(n− k)!

= n pkn−1(312, 321) +

n∑
k=2

pkn−k(312, 321)
(n− 1)!

(n− k)!
.

It follows that

pkn+1(312, 321) = (n+ 1) pkn(312, 321) +

n+1∑
k=2

pkn+1−k(312, 321)
n!

(n+ 1− k)!

= (n+ 1) pkn(312, 321) + npkn−1(312, 321) + n

n∑
k=2

pkn−k(312, 321)
(n− 1)!

(n− k)!

= (2n+ 1) pkn(312, 321)− n(n− 1) pkn−1(312, 321).

ECA 5:1 (2025) Article #S2R2 9

Jun Yan

For simplicity, let pn = pkn(312, 321), and consider the exponential generating function P (x) =
∑
n≥0

pn
n! x

n.
From the recurrence relation above and p0 = p1 = 1, p2 = 3, we have that

P ′(x) =
∑
n≥0

pn+1

n!
xn = 1 + 3x+

∑
n≥2

pn+1

n!
xn

= 1 + 3x+
∑
n≥2

(2n+ 1)pn − n(n− 1)pn−1
n!

xn

= 1 + 3x+ 2x
∑
n≥1

pn+1

n!
xn +

∑
n≥2

pn
n!
xn − x2

∑
n≥0

pn+1

n!
xn

= 1 + 3x+ 2x(P ′(x)− 1) + (P (x)− 1− x)− x2P ′(x).

This gives the differential equation (x− 1)2P ′(x) = P (x). Solving this and using P (0) = 1, we get P (x) = e
x

1−x .
Thus,

pkn(312, 321) = pn = n![xn]P (x) = n![xn]e
x

1−x

= n![xn]
∑
k≥0

xk

k!(1− x)k
= n!

n∑
k=1

[xn−k]
1

k!(1− x)k
= n!

n∑
k=1

(
n−1
k−1
)

k!
,

as required.

2.5 Avoiding one pattern

Pattern σ pkn(σ), 1 ≤ n ≤ 8 OEIS Result
132

1, 3, 14, 85, 621, 5236, 49680, 521721 A088716 Theorem 2.27
231
123 1, 3, 10, 37, 146, 602, 2563, 11181 A109081 Theorem 2.28
213 1, 3, 13, 69, 421, 2867, 21477, 175769 A088368 Theorem 2.29
312 1, 3, 14, 87, 669, 6098, 64050, 759817 A132624 Theorem 2.30
321 1, 3, 15, 102, 860, 8553, 97331, 1241900 New Theorem 2.31

Theorem 2.27. pkn(132) = pkn(231) = pn, where p0 = 1 and pn =
∑n
k=1 kpk−1pn−k for all n ≥ 1. It follows

that the generating function P (x) =
∑
n≥0 pnx

n satisfies the differential equation x2P (x)P ′(x) + x(P (x))2 −
P (x) + 1 = 0.

Proof. For any σ ∈ Avn(132), if σ(i) = n, then σ(j) > σ(j′) for all 1 ≤ j < i < j′ ≤ n. From this, it follows that
Avn(132) = {(σ1 ⊕ 1)	 σ2 | k ∈ [n], σ1 ∈ Avk−1(132), σ2 ∈ Avn−k(132)}. Therefore,

pkn(132) =

n∑
k=1

∑
σ1∈Avk−1(132)

∑
σ2∈Avn−k(132)

`((σ1 ⊕ 1)	 σ2)

=

n∑
k=1

∑
σ1∈Avk−1(132)

∑
σ2∈Avn−k(132)

k`(σ1)`(σ2) =

n∑
k=1

k pkk−1(132) pkn−k(132)

Similarly, for any σ ∈ Avn(231), if σ(i) = n, then σ(j) < σ(j′) for all 1 ≤ j < i < j′ ≤ n. From this, it
follows that Avn(231) = {σ1 ⊕ (1	 σ2) | k ∈ [n], σ1 ∈ Avk−1(231), σ2 ∈ Avn−k(231)}. Therefore,

pkn(231) =

n∑
k=1

∑
σ1∈Avk−1(231)

∑
σ2∈Avn−k(231)

`(σ1 ⊕ (1	 σ2))

=

n∑
k=1

∑
σ1∈Avk−1(231)

∑
σ2∈Avn−k(231)

k`(σ1)`(σ2) =

n∑
k=1

k pkk−1(231) pkn−k(231)

Since pkn(132) and pkn(231) satisfy the same recurrence relation, and it is easy to verify that their initial
values agree, their values must coincide for all n ≥ 0. Let their common values be pn, it follows from the
recurrence relation that the generating function P (x) =

∑
n≥0 pnx

n satisfies the differential equation

P (x) = 1 +
∑
n≥1

pnx
n = 1 +

∑
n≥1

n∑
k=1

kpk−1pn−kx
n

ECA 5:1 (2025) Article #S2R2 10

Jun Yan

= 1 + x

∑
a1≥0

(a1 + 1)pa1x
a1

∑
a2≥0

pa2x
a2

 = 1 + x(xP (x))′P (x),

which is equivalent to the differential equation x2P (x)P ′(x) + x(P (x))2 − P (x) + 1 = 0.

The differential equation we obtained in Theorem 2.27 is an example of a Chini’s Equation, which has no
known explicit solution. It remains open whether we can find a more explicit formula for pn.

The next few results require some preparation. For each σ ∈ {123, 213, 312, 321}, we first use a bijection of
Kratthenthaler in [7] or its variants, which will be described in the proofs later, between Avn(σ) and the set Cn
of Catalan paths of length 2n to express pkn(σ) as a sum over Cn. For each C ∈ Cn, let u(C) be the sequence of
integers recording in order the lengths of each block of consecutive up-steps in C. For example, for the Catalan
path C = UDUUDUDD ∈ C4, u(C) = (1, 2, 1). All terms in the sum over all C ∈ Cn will be expressions in
terms of entries of u(C).

For k ∈ [n], let Cn,k be the set of Catalan paths of length 2n, which begins with a block of k up-steps,
or equivalently, Cn,k = {C ∈ Cn | u(C)1 = k}. For each C ∈ Cn,k, C has a unique decomposition C =
U1 · · ·UkD1C1 · · ·DkCk, where U1, · · · , Uk are the first k consecutive up-steps in C, D1, · · · , Dk are down-steps,
and C1, · · · , Ck are Catalan paths, possibly of length 0. This decomposition is unique because, for all i ∈ [k],
Di is the first down-step in C that goes down from height k − i+ 1 to height k − i. We call this the canonical
decomposition of C. Also, note that u(C) is obtained by attaching u(C1), · · · ,u(Ck) together in order, and
adding an entry of k to the front. Moreover, for any n ≥ k ≥ 1 and any Catalan paths C1, · · · , Ck, possibly of
length 0, with total length 2(n − k), C = U1 · · ·UkD1C1 · · ·DkCk is a Catalan path in Cn,k. Hence, the map
C 7→ (C1, · · · , Ck) is a bijection.

Finally, to extract coefficients from generating functions satisfying certain functional equations, the well-known
Lagrange’s Implicit Function Theorem below is very useful, and proof of it can be found, for example, in [4].

Lemma 2.2 (Lagrange’s Implicit Function Theorem). Let P (x), φ(x), ψ(x) be formal power series with coefficients
in C, such that [x0]φ(x) 6= 0 and P (x) = xφ(P (x)). Then for n ≥ 1,

[xn]ψ(P (x)) =
1

n
[xn−1]ψ′(x)(φ(x))n.

In particular, if we set ψ(x) = x, then [x0]P (x) = 0 and for n ≥ 1,

[xn]P (x) =
1

n
[xn−1](φ(x))n.

Theorem 2.28.

pkn(123) =
1

n+ 1

n∑
k=1

(
n+ 1

k

)(
n+ k − 1

2k − 1

)
.

Proof. For simplicity, let pn = pkn(123), and let P (x) =
∑
n≥0 pnx

n be its generating function.
In [7], Krattenthaler showed that the map Ωn : Avn(123) → Cn described below is a bijection. For each

permutation σ = σ(1) · · ·σ(n) ∈ Avn(123) and i ∈ [n], we say that σ(i) is a right-to-left maximum if σ(i) > σ(j)
for all i < j ≤ n. Then σ uniquely decomposes as σ = s1x1 · · · skxk, where x1, · · · , xk are the right-to-left
maxima of σ, and s1, · · · , sk are possibly empty segments. Let Ωn(σ) be the Catalan path of length 2n obtained
by, for each i ∈ [k] in order, drawing a block of |si|+ 1 consecutive up-steps followed by a block of xi − xi+1

consecutive down-steps, where |si| is the length of the segment si and we view xk+1 = 0.
Note that from the definition of right-to-left maxima, x1 > · · · > xk, xi is larger than every entry in si+1

for all i ∈ [k − 1], and xi is also larger than every entry in si for all i ∈ [k]. Since σ avoids the pattern 123,

each segment si is decreasing. Thus, we have `(σ) =
∏k
i=1(|si|+ 1). Moreover, note that |si|+ 1 = u(Ωn(σ))i.

Therefore, since Ωn : Avn(123)→ Cn is a bijection, we have

pn = pkn(123) =
∑

σ∈Avn(123)

`(σ) =
∑
C∈Cn

|u(C)|∏
i=1

u(C)i.

Let W (C) =
∏|u(C)|
i=1 u(C)i. For all k ∈ [n] and C ∈ Cn,k, let C = U1 · · ·UkD1C1 · · ·DkCk be the canonical

decomposition of C. Then we have W (C) = k
∏k
j=1W (Cj). Moreover, recall that the map C 7→ (C1, · · · , Ck) is

a bijection, so we have for n ≥ 1

pn =
∑
C∈Cn

W (C) =

n∑
k=1

k
∑

C1∈Ca1 ,··· ,Ck∈Cak
a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

W (Cj) =

n∑
k=1

k
∑

a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

paj .

ECA 5:1 (2025) Article #S2R2 11

Jun Yan

It follows that

P (x) = 1 +
∑
n≥1

pnx
n = 1 +

∑
n≥1

 n∑
k=1

k
∑

a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

paj

xn

= 1 +
∑
k≥1

kxk

 ∑
a1,··· ,ak≥0

n∏
j=1

pajx
aj

 = 1 +
∑
k≥1

kxk(P (x))k = 1 +
xP (x)

(1− xP (x))2
.

Now let P (x) = xP (x), then P (x) = x(1 + P (x)(1− P (x))−2). Thus, by Lemma 2.2, we have for n ≥ 1,

pn = [xn]P (x) = [xn+1]P (x) =
1

n+ 1
[xn]

(
1 +

x

(1− x)2

)n+1

=
1

n+ 1

n∑
k=1

(
n+ 1

k

)
[xn−k]

1

(1− x)2k

=
1

n+ 1

n∑
k=1

(
n+ 1

k

)(
n+ k − 1

2k − 1

)
,

as required.

Theorem 2.29.

pkn(213) =
1

n+ 1

∑
a1+···+an+1=n
a1,··· ,an+1≥0

a1! · · · an+1!.

Proof. For simplicity, let pn = pkn(213), and let P (x) =
∑
n≥0 pnx

n be its generating function.
Similar to the proof of Theorem 2.28, the map Ωn : Avn(213)→ Cn described below is a bijection. For each

permutation σ ∈ Avn(213), σ uniquely decomposes as σ = s1x1 · · · skxk, where x1, · · · , xk are the right-to-left
maxima of σ, and s1, · · · , sk are possibly empty segments. Let Ωn(σ) be the Catalan path of length 2n obtained
by, for each i ∈ [k] in order, drawing a block of |si|+ 1 consecutive up-steps followed by a block of xi − xi+1

consecutive down-steps, where we view xk+1 = 0.
Note that from the definition of right-to-left maxima, x1 > · · · > xk, xi is larger than every entry in si+1 for

all i ∈ [k − 1], and xi is also larger than every entry in si for all i ∈ [k]. Since σ avoids the pattern 213, each

segment si is increasing. Thus, we have `(σ) =
∏k
i=1(|si|+1)!. Moreover, we have again that |si|+1 = u(Ωn(σ))i,

so

pn = pkn(213) =
∑

σ∈Avn(213)

`(σ) =
∑
C∈Cn

|u(C)|∏
i=1

(u(C)i)!.

Let W (C) =
∏|u(C)|
i=1 (u(C)i)!. For all k ∈ [n] and C ∈ Cn,k, let C = U1 · · ·UkD1C1 · · ·DkCk be the canonical

decomposition of C. Then we have W (C) = k!
∏k
j=1W (Cj). Moreover, recall that the map C 7→ (C1, · · · , Ck)

is a bijection, so we have

pn =

n∑
k=1

k!
∑

C1∈Ca1 ,··· ,Ck∈Cak
a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

W (Cj) =

n∑
k=1

k!
∑

a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

paj .

It follows that

P (x) = 1 +
∑
n≥1

pnx
n = 1 +

∑
n≥1

 n∑
k=1

k!
∑

a1+···+ak=n−k
a1,··· ,ak≥0

n∏
j=1

paj

xn

= 1 +
∑
k≥1

k!xk

 ∑
a1,··· ,ak≥0

n∏
j=1

pajx
aj

 = 1 +
∑
k≥1

k!xk(P (x))k.

Now let P (x) = xP (x), then P (x) = x
∑
k≥0 k!(P (x))k. Thus, by Lemma 2.2, we have for n ≥ 0,

pn = [xn]P (x) = [xn+1]P (x) =
1

n+ 1
[xn]

∑
k≥0

k!xk

n+1

ECA 5:1 (2025) Article #S2R2 12

Jun Yan

=
1

n+ 1

∑
a1+···+an+1=n
a1,··· ,an+1≥0

a1! · · · an+1!,

as required.

As will be seen below, when we express pkn(312) and pkn(321) as sums over Cn, similar to the proofs of
Theorem 2.28, 2.29 above, the terms in these sums will be products of cumulative sums of entries in u(C), instead
of just products of individual entries in u(C). As a result, our method above using canonical decomposition of
Catalan paths does not translate. Instead, we use the following observation to obtain recursive formulas for
pkn(312) and pkn(321).

For n > k ≥ 1 and C ∈ Cn,k, we have |u(C)| ≥ 2. Let i′ ∈ [k] be the length of the first block of down-steps in
C and let C ′ be obtained by deleting the last i′ up-steps in the first block of up-steps in C, as well as the first i′

down-steps following it. It is easy to verify that C ′ is a Catalan path of length 2(n− i′), whose first block of
up-steps have length j = u(C)1 + u(C)2 − i′, which is between k − i′ + 1 and n− i′. We say that C ′ is obtained
by deleting the first peak of C. It is also easy to verify that this process is reversible.

Theorem 2.30.

pkn(312) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 .

Consequently, pkn(312) =
∑n
k=1 pn,k, where

pn,k =

1, if k = n,

(n− k + 1)

n−1∑
i=n−k

i∑
j=k+1−n+i

pi,j , if 1 ≤ k ≤ n− 1.

Furthermore, the sequence pkn(312) satisfies

x

1− x
=

∞∑
n=1

pkn(312)
xn(1− x)n∏n
`=1(1 + `x)

.

Proof. For brevity, let pn = pkn(312).
Similar to the proof of Theorem 2.29, the map Ωn : Avn(312) → Cn described below is a bijection. Each

σ ∈ Avn(312) can be uniquely decomposed as xksk · · ·x1s1, where xk < · · · < x1 are the left-to-right maxima of
σ, and sk, · · · , s1 are possibly empty segments. Define Ωn(σ) to be the Catalan path of length 2n obtained by,
for each i ∈ [k] in order, drawing a block of |si|+ 1 up-steps and followed by a block of xi − xi+1 down-steps,
where we view xk+1 as 0.

Note that from the definition, for all i ∈ [k], xi is larger than every entry before it and every entry
in the segment si. Moreover, each segment si is decreasing as σ avoids the pattern 312. It follows that

`(σ) =
∏k−1
i=1

(
1 +

∑k
j=i+1(|sj |+ 1)

)
. Since |si|+ 1 = u(Ωn(σ))i and Ωn is a bijection, it follows that

pkn(312) = pn =
∑

σ∈Avn(312)

`(σ) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 ,

proving the first part. The second and third part follows by setting m = 1 in Theorem 4.2 below.

Theorem 2.31.

pkn(321) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 |u(C)|∏
i=1

(u(C)i − 1)!.

Consequently, pkn(321) =
∑n
k=1(k − 1)!pn,k, where

pn,k =

1, if k = n,

(n− k + 1)

n−1∑
i=n−k

i∑
j=k+1−n+i

(n− i+ j − k − 1)!pi,j , if 1 ≤ k ≤ n− 1.

ECA 5:1 (2025) Article #S2R2 13

Jun Yan

Proof. For brevity, let pn = pkn(321).
Similar to the proof of Theorem 2.28, the map Ωn : Avn(321) → Cn described below is a bijection. Each

σ ∈ Avn(321) can be uniquely decomposed as xksk · · ·x1s1, where xk < · · · < x1 are the left-to-right maxima of
σ, and sk, · · · , s1 are possibly empty segments. Define Ωn(σ) to be the Catalan path of length 2n obtained by,
for each i ∈ [k] in order, drawing a block of |si|+ 1 up-steps and followed by a block of xi − xi+1 down-steps,
where we view xk+1 as 0.

Note that from the definition, for all i ∈ [k], xi is larger than every entry before it and every entry in the
segment si. Moreover, each segment si is increasing as σ as σ avoids pattern 321. It follows that

`(σ) =

k−1∏
i=1

1 +

k∑
j=i+1

(|sj |+ 1)

 k∏
i=1

|si|!.

Since |si|+ 1 = u(Ωn(σ))i and Ωn is a bijection, it follows that

pkn(321) = pn =
∑

σ∈Avn(321)

`(σ) =
∑
C∈Cn

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 |u(C)|∏
i=1

(u(C)i − 1)!,

proving the first part.

Let W (C) =
∏|u(C)|
i=2 (1 +

∑|u(C)|
j=i u(C)j)

∏|u(C)|
i=1 (u(C)i − 1)!, and let pn,k = 1

(k−1)!
∑
C∈Cn,k

W (C), so that

pn = pkn(321) =
∑n
k=1(k − 1)!pn,k. Note that pn,n = 1 as Cn,n contains only the Catalan path consisting of n

up-steps followed by n down-steps. For n > k ≥ 1 and C ∈ Cn,k, we have |u(C)| ≥ 2. Let i′ ∈ [k] be the length
of the first block of down-steps in C and let C ′ ∈ Cn−i′,j be obtained by deleting the first peak of C. Note that
u(C ′)t = u(C)t+1 for all 2 ≤ t ≤ |u(C ′)| = |u(C)| − 1, while j = u(C ′)1 = u(C)1 + u(C)2 − i′ = k + u(C)2 − i′.
Therefore,

W (C) =

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 |u(C)|∏
i=1

(u(C)i − 1)!

=

1 +

|u(C)|∑
j=2

u(C)j

 (u(C)1 − 1)!(u(C)2 − 1)!

|u(C)|∏
i=3

1 +

|u(C)|∑
j=i

u(C)j

 |u(C)|∏
i=3

(u(C)i − 1)!

=

1 +

|u(C)|∑
j=2

u(C)j

 (u(C)1 − 1)!(u(C)2 − 1)!

(u(C ′)1 − 1)!
W (C ′)

= (n− k + 1)
(k − 1)!(i′ + j − k − 1)!

(j − 1)!
W (C ′).

Thus, we have

pn,k =
1

(k − 1)!

∑
C∈Cn,k

W (C) =

k∑
i′=1

n−i′∑
j=k−i′+1

∑
C′∈Cn−i′,j

(n− k + 1)
(i′ + j − k − 1)!

(j − 1)!
W (C ′).

= (n− k + 1)

k∑
i′=1

n−i′∑
j=k−i′+1

(i′ + j − k − 1)!pn−i′,j

= (n− k + 1)

n−1∑
i=n−k

i∑
j=k+1−n+i

(n− i+ j − k − 1)!pi,j ,

as required.

3. Pattern avoidance in block permutations

In this section, we provide bijective proofs of Theorem 1.1 and 1.2, which were originally proved algebraically
by Adeniran and Pudwell in [1].

3.1 Bijective proof of Theorem 1.1

We begin with some preliminary analysis of parking functions whose block permutations avoid the patterns 123
and 132, and introduce some concepts and notations that will be used in the proof below. Let f ∈ Pfn(123, 132)

ECA 5:1 (2025) Article #S2R2 14

Jun Yan

and let πf ∈ Sn be its associated block permutation. Since πf avoids 132, every entry in πf appearing before n
is larger than every entry appearing after n. Since πf avoids 123, the entries in πf before n appear in decreasing
order, and each block has size 0, 1, or 2. In particular, πf (1) = n or n− 1. Also, using condition B and that
each block has size 0, 1, or 2, we see that there is always an equal number of size 2 blocks and empty blocks, and
for all i ≥ 1, the i-th size 2 block always appear before the i-th empty block, provided that both exist. Hence,
the subsequence of size 2 blocks and empty blocks can be viewed as a sequence of correctly matched left and
right brackets. As such, for every size 2 block, there exists a unique corresponding empty block that is matched
with it in this way.

We now recursively partition f ∈ Pfn(123, 132) written in block notation into what we called clusters, each of
which is a union of blocks in f , as follows. When n = 0, the unique empty parking function contains no cluster.
For n ≥ 1:

• If πf (1) = n, let 0 ≤ k ≤ n− 1 be the smallest integer such that πf (i) = n+ 1− i for all 1 ≤ i ≤ n− k. By
condition B, the first n− k blocks of f all have size 1, and contain n, n− 1, · · · , k + 1 in order. The first
cluster of f is then defined to be the union of these n− k blocks, and is called an extend cluster of length
n− k.

• If πf (1) = n − 1, let 0 ≤ k ≤ n − 1 be such that πf (n − k) = n. It follows that πf (i) = n − i for all
1 ≤ i ≤ n− k − 1 as πf avoids 123 and 132. Moreover, one of the following must occur:

– The first n− k blocks of f all have size 1. In this case, the first cluster of f is defined to be the union
of the first n− k blocks of f , and is called a branch cluster of length n− k.

– The first n − k − 2 blocks of f all have size 1, while the (n − k − 1)-th block of f have size 2 and
contains k+ 1 and n. In this case, the first cluster of f is defined to be the union of the first n− k− 1
blocks of f , along with the unique empty block corresponding to the (n− k − 1)-th block of f , and
we call it a jump cluster of length n− k.

In all cases above, let f ′ be obtained by removing all blocks in the first cluster from f , and note that f ′

is a parking function in Pfk(123, 132). We then define the remaining clusters of f to be the clusters of f ′.
Furthermore, we define the main portion of each cluster to be the size 1 or 2 blocks inside the cluster. It
follows from the definition above that if we ignore empty blocks, then the main portion of each cluster appears
consecutively in f . Finally, for a jump cluster, we say that its unique empty block lies inside another cluster if it
lies ahead of a block in the main portion of this cluster. See Figure 4 for an example of how the blocks of a
parking function f ∈ Pf25(123, 132) are partitioned into clusters.

We are now ready to give a bijective proof of Theorem 1.1.

Proof of Theorem 1.1. Let T odd
n+1 be the set of ordered rooted trees with n+ 1 edges and odd root degrees. We

find a bijective correspondence between Pfn(123, 132) and T odd
n+1 for all n ≥ 0.

• Φn : Pfn(123, 132)→ T odd
n+1 .

We define Φn using induction on n. For each f ∈ Pfn(123, 132), in addition to defining the rooted tree Φn(f),
we also label its n+ 1 non-root vertices with 0, 1, · · · , n to make the definitions of Φn and Ψn easier to describe.
The definition of Φ0,Φ1,Φ2 and Φ3 along with the vertex labels are given in Figure 2.

Now assume n ≥ 4 and let f ∈ Pfn(123, 213). Let the first cluster of f have length n−k, where 0 ≤ k ≤ n−1.
Let f ′ be obtained by deleting the first cluster from f , and note that f ′ ∈ Pfk(123, 132). Define two labelled
graphs Pk+1,n, Qk+1,n as in Figure 3 below. Depending on the first cluster of f , we split into several cases, but
in all cases, Φn(f) will be obtained by attaching the unique unlabelled vertex of either Pk+1,n or Qk+1,n to a
vertex in Φk(f ′) to create either one or two new branches at left-most positions, respectively.

Case 1. The first cluster of f is an extend cluster. Define Φn(f) to be the rooted tree obtained by attaching
the unlabelled vertex in Pk+1,n to the vertex in Φk(f ′) with label k. In this case, we say that we have performed
an extend operation to the vertex with label k.

Case 2. The first cluster of f is a branch cluster. Define Φn(f) by attaching the unlabelled vertex in Qk+1,n

to the vertex in Φk(f ′) with label k. In this case, we say that we have performed a branch operation to the
vertex with label k.

Case 3. The first cluster of f is a jump cluster. In this case, we will perform a jump operation to some
vertex in Φk(f ′), which will depend on where the unique empty block in this jump cluster lies in f .

Case 3.1. The unique empty block in this cluster lies in an extend cluster consisting of blocks {a}, · · · , {b+
1}, and appears ahead of the block {`}, where b+ 1 ≤ ` ≤ a. Define Φn(f) by attaching the unlabelled vertex in
Qk+1,n to the vertex of Φk(f ′) with label `− 1.

ECA 5:1 (2025) Article #S2R2 15

Jun Yan

f ()

T
0

f ({1})

T 0

1

f ({1}, {2}) ({1, 2}, ∅) ({2}, {1})

T 0

12
1 02

0

1

2

f ({2}, {1}, {3}) ({2}, {1, 3}, ∅) ({2}, {3}, {1}) ({2, 3}, {1}, ∅)

T
0

1

2

3
1

2

03
0

1

23

2

1

03

f ({2, 3}, ∅, {1}) ({3}, {2}, {1}) ({3}, {1}, {2}) ({3}, {1, 2}, ∅)

T 0

2 13

0

1

2

3

0

1

3

2
1

3

02

Figure 2: Bijection between Pfn(123, 132) and T odd
n+1 defined by Φn and Ψn for n = 0, 1, 2, 3.

k + 1

k + 2

.

.

.

n − 1

n

k + 1

k + 2

.

.

.

n − 2

n − 1

n

Pk+1,n Qk+1,n

Figure 3: The two labelled graphs Pk+1,n, Qk+1,n used in the definition of Φn.

Case 3.2. The unique empty block in this cluster lies in a branch cluster consisting of blocks {a −
1}, · · · , {b + 1}, {a} ahead of the block {`}, where again b + 1 ≤ ` ≤ a. If b + 1 ≤ ` ≤ a − 1, define Φn(f) by
attaching the unlabelled vertex in Qk+1,n to the vertex in Φk(f ′) with label `, while if ` = a, define Φn(f) by
attaching the unlabelled vertex in Qk+1,n to the vertex in Φk(f ′) with label b.

Case 3.3. The unique empty block in this cluster lies in another jump cluster whose main portion consists
of blocks {a− 1}, · · · , {b+ 2}, {b+ 1, a}, and appear ahead of the block containing ` for some b+ 1 ≤ ` ≤ a− 1.
Define Φn(f) by attaching the unlabelled vertex in Qk+1,n to the vertex in Φk(f ′) with label `.

Case 3.4. The unique empty block in this cluster does not lie in another cluster of f ′, or equivalently it
is the last block of f . Define Φn(f) by attaching the unlabelled vertex in Qk+1,n to the root of Φk(f ′).

See Figure 4 for an example where we compute Φ25(f) for a parking function f ∈ Pf25(123, 132).
Before moving on, we prove two properties of the function Φn that we will use in the definitions of Ψn and to

justify bijectivity.

Claim 3.1. Suppose Φn(f) = T and u ∈ T is a vertex with m ≥ 3 branches B1, B2, · · · , Bm, listed from left to
right. Then every vertex in B1, B2 is created later than all vertices in Bi for all 3 ≤ i ≤ m.

Proof of claim. Since B1, B2 are the two left-most branches of u which has at least three branches, from the
definition of Φn, we see that the first few vertices in branches B1, B2 must be created together by performing
a jump operation to the vertex u, which corresponds to a jump cluster C in f . Suppose for a contradiction
that there exists a vertex in Bi for some 3 ≤ i ≤ m that is created after this jump operation, then this can
happen only if we perform a jump operation to some vertex u′ ∈ Bi, that corresponds to a jump cluster C ′ in f
appearing before C. However, since u is created before u′ in T , from the definition of Φn, we see that the unique
empty block in the jump cluster C ′ appears in f before the unique empty block in the jump cluster C. This is a
contradiction to how the empty blocks are matched, proving the claim.

We say that a vertex in a rooted tree is a branching vertex if it has at least two children.

ECA 5:1 (2025) Article #S2R2 16

Jun Yan

block {24} {23, 25} {21} ∅ {20} {19, 22} {17} {16, 18}
cluster number 1 1 2 1 2 2 3 3

block {15} {14} ∅ {13} {12} {10} {9} {8, 11}
cluster number 4 4 3 4 4 5 5 5

block {6} {5, 7} {3} ∅ {2} {1} ∅ {4} ∅
cluster number 6 6 7 6 7 7 5 7 2

cluster number 1 2 3 4 5 6 7

cluster type jump jump jump extend jump jump branch

initialise−−−−−−−−→ Φ4(f7)
−−−−−−→

0

1

2

3

4

Φ7(f6)
−−−−−−→

0

1

2

3

4

5

6

7

Φ11(f5)
−−−−−−−→

0

1

2

3

4

5

6

7

8

9

10

11

Φ15(f4)
−−−−−−−→

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Φ18(f3)
−−−−−−−→

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Φ22(f2)
−−−−−−−→

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Φ25(f1)
−−−−−−−→

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 4: An example computing Φ25(f), where f = ({24}, {23, 25}, {21}, ∅, {20}, {19, 22}, {17}, {16,
18}, {15}, {14}, ∅, {13}, {12}, {10}, {9}, {8, 11}, {6}, {5, 7}, {3}, ∅, {2}, {1}, ∅, {4}, ∅). The cluster that each block
belongs to and the cluster types are listed in the tables above. For each i ∈ [7], fi is the parking function
obtained by only retaining the i-th to 7-th clusters of f . In each step, the edges added are highlighted in red.

ECA 5:1 (2025) Article #S2R2 17

Jun Yan

Claim 3.2. Suppose Φn(f) = T and u ∈ T is a vertex whose two left-most branches are B1, B2, with B1 on the
left of B2. Suppose B2 contains a branching vertex, then after the initial branch or jump operation that creates
the first few vertices in B1 and B2, all remaining vertices in B1 are created before any other vertices in B2 are.
In particular, the last jump or branch operation in the creation of B1 and B2 is performed to a vertex in B2.

Proof of claim. From the definition of Φn, the first vertices in branches B1, B2 must be created together by
performing an operation that corresponds to a branch or jump cluster C in f . After this operation, we have
created a single vertex u′ in B1 and a path P in B2. Since B2 contains a branching vertex, at some point we
must apply a jump operation to some vertex on P to create new branches. Let C2 be the jump cluster in f
corresponding to the first such jump operation, and assume the operation is performed to u2 ∈ P . If after this,
for a contradiction, some more vertices in B1 are created, then there must be a jump operation performed to
some vertex u1 in B1. Let C1 be the corresponding jump cluster in f . Note that C1 appears before C2 in f , the
unique empty block in C2 lies inside the cluster C, while the unique empty block in C1 lies in a cluster appearing
before C in f . This is a contradiction to how the empty blocks are matched, proving the claim.

• Ψn : T odd
n+1 → Pfn(123, 132).

We define Ψn inductively. The definition of Ψ0,Ψ1,Ψ2 and Ψ3 are given in Figure 2.
Now assume n ≥ 4 and let T ∈ T odd

n+1 . If T is just a path of length n+ 1, let Ψn(T) be the parking function
consisting of a single extend cluster of length n. Otherwise, we run the following algorithm which, as we will
show below, identifies the vertex in tree T to which the operation corresponding to the first branch or jump
cluster in Ψn(T) is performed.

To initialise, begin at the root of T .
Step 1: Descend until we first reach a branching vertex, then go to Step 2.
Step 2: Look at the two left-most branches B1 and B2 of the current vertex, where B1 is to the left of B2. If

both B1 and B2 contain no branching vertex, stop. If B2 contains no branching vertex but B1 does, then repeat
Step 1 in B1. If B2 contains a branching vertex, then repeat Step 1 in B2.

Claim 3.3. If Φn(f) = T , then the algorithm applied to T identifies the vertex to which the operation corre-
sponding to the first branch or jump cluster in f is performed.

Proof. In each iteration of the algorithm, suppose the current vertex is u, with its branches listed from left to
right being B1, B2, · · · , Bm. By Claim 3.1, since B1 and B2 are created later than everything in Bi for 3 ≤ i ≤ m,
the last branch or jump operation is performed to either u if B1, B2 both contain no branching vertex, in which
case the algorithm terminates and u is correctly returned, or to a vertex in B1 or B2 if at least one of them
contains a branching vertex. In the latter case, if B2 contains no branching vertex, then B1 does and the last
branch or jump operation is therefore performed to a vertex in B1, and the algorithm correctly moves to B1 and
iterates. Otherwise, B2 contains a branching vertex, and by Claim 3.2, the last branch or jump operation is
performed to a vertex in B2, and the algorithm correctly moves to B2 and iterates, proving the claim.

Note that the output of this algorithm will always be a branching vertex v of T whose two left-most branches
both contain no branching vertex, in other words, these two branches are paths. Say they are P1, P2 with `1, `2
vertices, respectively, with P1 to the left of P2 and `1 + `2 = n − k for some 0 ≤ k ≤ n − 2. Let T ′ be the
subtree of T obtained by deleting the vertices in P1, P2. Note that T ′ ∈ T odd

k+1 . From induction hypothesis, if
f ′ = Ψk(T ′), then T ′ = Φk(f ′). Hence, from the definition of Φk(f ′), we obtain a vertex labelling of T ′. We
split into several cases depending on the size of `1 and the label of v in T ′.

Case 1. `1 > 1. Let T1 be the subtree of T obtained by deleting the all vertices in P1, except the one
adjacent to v. Note that T1 ∈ T odd

n−`1+1. Define Ψn(T) to be parking function on [n] obtained by attaching an
extend cluster consisting of blocks {n}, {n− 1}, · · · , {n− `1 + 2} to the front of Ψn−`1+1(T1).

Case 2. `1 = 1 and the label of v in T ′ is k. Let Ψn(T) be the parking function on [n] obtained by attaching
a branch cluster consisting of blocks {n− 1}, · · · , {k + 1}, {n} to the front of f ′ = Ψk(T ′).

Case 3. `1 = 1 and the label of v in T ′ is not k. It follows that if the label of v in T ′ is the largest element
in a cluster of f ′, then this cluster is not the first cluster in f ′.

Case 3.1. The label of v in T ′ is `, and `+ 1 is in an extend cluster in f ′. Let Ψn(T) be the parking
function on [n] obtained by attaching a jump cluster to f ′ = Ψk(T ′), where we attach the main part consisting
of the blocks {n− 1}, · · · , {k + 2}, {k + 1, n} to the front of f ′ and insert the unique empty block ahead of the
block {`+ 1} in f ′.

Case 3.2. The label of v in T ′ is `, and ` + 1 is in a branch cluster in f ′. If ` + 1 is the smallest
element in this branch cluster, let Ψn(T) be the parking function on [n] obtained by attaching a jump cluster to
f ′ = Ψk(T ′), where we attach the main portion consisting of the blocks {n− 1}, · · · , {k + 2}, {k + 1, n} to the

ECA 5:1 (2025) Article #S2R2 18

Jun Yan

front of f ′ and insert the unique empty block ahead of the last block (the one containing the largest element) in
this branch cluster. Otherwise, let Ψn(T) be the parking function on [n] obtained by attaching a jump cluster to
f ′ = Ψk(T ′), where we attach the main portion consisting of the blocks {n− 1}, · · · , {k + 2}, {k + 1, n} to the
front of f ′ and insert the unique empty block ahead of the block {`}.

Case 3.3. The label of v in T ′ is `, and `+ 1 is in a jump cluster C in f ′. We claim that `+ 1 cannot be
the smallest element in C. Indeed, this would mean that ` is the largest element in the cluster after C, and the
jump operation corresponding to the cluster C jumps away from the vertex with label `, namely v, to some
other vertex u and creates two new branches there. Note that from the definition of Φk and that ` is the largest
element in its cluster, v must be a leaf in T ′. Let w be the common ancestor of u and v in T ′ farthest away from
the root. If w = u, then u is an ancestor of v in T with at least three branches, with v not in the two left-most
ones. This contradicts that the algorithm applied to T returns v. We cannot have w = v as v is a leaf in T ′.
Hence, v and u are strict descendants of w, and are in different branches Bu and Bv below w by the choice of w.

If Bu is to the left of Bv, and Bv is at least the third left-most branch below w, then we have a contradiction
to Claim 3.1 as u in Bu is created earlier than v in Bv in T ′. Thus, Bu and Bv are the two left-most branches
below w. Since the label of v is the largest in its cluster, v is not created by the initial branch or jump operation
that creates the first vertices of Bu and Bv. Thus, Bv must contain a branching vertex, as otherwise v cannot
be created. But then we have a contradiction to Claim 3.2 as the jump operation corresponding to cluster C
attaches new branches to u ∈ Bu after v ∈ Bv is created.

If Bu is to the right of Bv, and Bu is at least the third left-most branch below w, then we have a contradiction
to Claim 3.1 as the vertices created by the jump operation corresponding to C in Bu are created later than v in
Bv in T ′. Thus, Bv and Bu are the two left-most branches below w. But this contradicts that the algorithm
applied to T returns v, as Bu contains a branching vertex u, so the algorithm should have returned a vertex
inside Bu. This proves the claim.

Hence, it follows that ` and `+ 1 are both in the jump cluster C. Let Ψn(T) be the parking function on [n]
obtained by attaching a jump cluster to f ′ = Ψk(T ′), where we attach the main portion consisting of the blocks
{n− 1}, · · · , {k + 2}, {k + 1, n} to the front of f ′ and insert the unique empty block ahead of the block in C
containing `.

Case 3.4. `1 = 1 and v is the root vertex of T ′. Let Ψn(T) be the parking function on [n] obtained by
attach a jump cluster to f ′ = Ψk(T ′), where we attach the main portion consisting of the blocks {n−1}, · · · , {k+
2}, {k + 1, n} to the front of f ′ and insert the unique empty block at the end of f ′.

• Proof of bijectivity.
We first show that every T ∈ T odd

n+1 satisfies Φn(Ψn(T)) = T . This can be checked easily for n ≤ 3, and
when T is just a path of length n+ 1. Otherwise, let v, k, T ′, `1 be as in the definition of Ψn(T) above. From
induction hypothesis, Φk(Ψk(T ′)) = T ′. Note that from the definition above, Ψn(T) is obtained by appropriately
attaching a branch cluster or a jump cluster C to the front of Ψk(T ′), and then attach a further extend cluster
C ′ to the front if `1 > 1. Then by the definition of Φn, Φn(Ψn(T)) is obtained by performing the branch or
jump operation corresponding to C to some vertex in Φk(Ψk(T ′)) = T ′ according to the cluster C, and then
appropriately perform the extend operation corresponding to C ′. It is easy to see from the cases above that
performing these operations on T ′ gives us exactly T , thus Φn(Ψn(T)) = T .

We now show that every f ∈ Pfn(123, 132) satisfies Ψn(Φn(f)) = f . Note that from the definition there
cannot be two or more consecutive extend clusters in f . Let f ′ be obtained by removing from f its first branch or
jump cluster along with the at most one extend cluster that might exist before it, and note that f ′ ∈ Pfk(123, 132)
for some 0 ≤ k ≤ n− 2. Let T ′ be the subtree of T = Φn(f) obtained by removing the two branches P1, P2 of the
vertex v ∈ T output by the algorithm. By Claim 3.3, v is the vertex to which the last branch or jump operation
is performed, which corresponds to the first branch or jump cluster in f . Thus, P1 and P2 are exactly the part of
T created by the first branch or jump cluster in f and the extend cluster that may exist before it. It follows that
Φk(f ′) = T ′ as T ′ is the part of T created by the remaining clusters in f , or in other words those in f ′. Thus,
Ψk(T ′) = Ψk((Φk(f ′)) = f ′ by induction hypothesis. Finally, from the definition of Ψn, Ψn(Φn(f)) = Ψn(T) is
obtained by appropriately attaching to the front of the parking function Ψk(T ′) = f ′ a branch or jump cluster
and possibly another extend cluster that corresponds to the branches P1, P2, which are exactly the clusters
removed from f to obtain f ′. Hence, Ψn(Φn(f)) = f , completing the proof.

3.2 Bijective proof of Theorem 1.2

Again, we begin with some preliminary analysis of parking functions whose block permutations avoid
the patterns 123 and 213, and introduce some concepts and notations that will be used in the proof below.
Let f ∈ Pfn(123, 213), and let πf ∈ Sn be its associated block permutation. Suppose πf (1) = k + 1, where
0 ≤ k ≤ n−1. We claim that πf (i) = n+2−i for all 2 ≤ i ≤ n−k. Indeed, since πf avoids 123, n, n−1, · · · , k+2
must appear in πf in decreasing order, and if there exists some m < k + 1 appearing between k + 1 and k + 2
in πf , then πf contains the pattern 213, a contradiction. It follows from the definition of blocks that each of

ECA 5:1 (2025) Article #S2R2 19

Jun Yan

k + 1, n, n− 1, · · · , k + 2 appear in a block of size 1, except possibly k + 1 and n may appear together in a block
of size 2. Moreover, since πf avoids 123, we again have that every block in f has size 0,1 or 2, and thus using
condition B, like in the 123,132 avoiding case, every size 2 block is matched with a unique empty block.

We now recursively partition f into what we called clusters, each of which is a union of blocks in f , as follows.
When n = 0, the unique empty parking function contains no cluster. For n ≥ 1:

• If k + 1, n, n− 1, · · · , k + 2 all appear in blocks of size 1, then the first cluster of f is defined to be the
union of these n− k blocks, and is called a closed cluster with length n− k and parameter n− k − 1.

• If k + 1 and n appear together in a block of size 2, followed by n− 1, · · · , k + 2 each in individual blocks,
then consider the unique empty block in f matched with the size 2 block {k + 1, n}.

– If this empty block appears right after the block containing k + 2 + `, where 0 ≤ ` ≤ n− k − 2, then
the first cluster of f is defined to be the union of the first n− k blocks of f (which includes the empty
block matched with {k + 1, n}), and is called a closed cluster with length n− k and parameter `.

– If this empty block appears after the block {k+ 2} and not immediately after it, then the first cluster
of f is defined to be the union of the first n− k − 1 blocks of f , along with this empty block, and we
call it an open cluster of length n− k.

In all cases above, let f ′ be obtained by removing all blocks in the first cluster, and note that f ′ is a parking
function in Pfk(123, 213). We then define the remaining clusters of f to be the clusters of f ′. Furthermore,
we define the main portion of each cluster to be the size 1 or 2 blocks inside the cluster. It follows from the
definition above that if we ignore empty blocks, then the main portion of each cluster appears consecutively.
Finally, for an open cluster, we say that its unique empty block lies inside another cluster if it lies after a block
in the main portion of this cluster. Note that this is different from the corresponding definition in the 123,132
case. See Figure 6 for an example of how the blocks of a parking function f ∈ Pf20(123, 213) are partitioned into
clusters.

We define another concept that will be used in the proof below. Let T be a rooted tree with its root v
having degree at least 2. We say that a rooted subtree T with root v is a full right subtree of T if the following
conditions hold:

• v is either equal to v or is reachable from v in T by always going down the right-most branch of every
branching vertex on the way.

• T is induced by v and a non-empty collection of consecutive branches below v starting from the right-most
one.

Now we are ready to give a bijective proof of Theorem 1.2.

Proof of Theorem 1.2. Let T ≥2n+1 be the set of ordered rooted trees with n+ 1 edges and root degrees at least 2,

except for when n = 0 we let T ≥21 be the set consisting of the unique rooted tree with 1 edge. We find a bijective

correspondence between Pfn(123, 213) and T ≥2n+1 for all n ≥ 0.

• Φn : Pfn(123, 213)→ T ≥2n+1.
The definition of Φ0,Φ1,Φ2 and Φ3 are given in Figure 5. We define Φn for n ≥ 4 inductively and include

the following condition in the induction hypothesis, which needs to be maintained in the definition below.

C Suppose f ∈ Pfn(123, 213), and f ∈ Pfk(123, 213) is obtained by removing the first few clusters C1, · · · , Cm
of total size n− k from f , with Cm being a closed cluster of parameter `′. Furthermore, let 0 ≤ ` ≤ `′ and
suppose that there does not exist i ∈ [m− 1], such that Ci is an open cluster and its unique empty block
either lies inside f or inside Cm and to the left of less than ` blocks in Cm. Then, the tree obtained by
attaching a path of length ` to the root of Φk(f), with the other end of this path as the new root, is a full
right subtree of Φn(f).

Now assume n ≥ 4 and let f ∈ Pfn(123, 213). Depending on the first cluster of f , we split into two cases.

Case 1. The first cluster of f is a closed cluster of length n− k and parameter `, where 0 ≤ k ≤ n− 1 and
0 ≤ ` ≤ n− k − 1. Let f ′ be obtained from f by removing this first cluster, and observe that f ′ ∈ Pfk(123, 213).
Define Φn(f) as follows. First, attach a path of length ` to the root of Φk(f ′) and make the other end of this
path the new root. Then, attach a path of length n− k − ` to this new root as a new left branch.

Case 2. The first cluster C of f is an open cluster of length n− k, where 0 ≤ k ≤ n− 2. Suppose the unique
empty block in this cluster lies inside a cluster C ′. Note that if C ′ is an open cluster, then the empty block

ECA 5:1 (2025) Article #S2R2 20

Jun Yan

f ()

T

f ({1})

T

f ({1}, {2}) ({1, 2}, ∅) ({2}, {1})

T

f ({1}, {3}, {2}) ({1, 3}, ∅, {2}) ({1, 3}, {2}, ∅)

T

f ({2}, {3}, {1}) ({2, 3}, ∅, {1}) ({2, 3}, {1}, ∅)

T

f ({3}, {1}, {2}) ({3}, {1, 2}, ∅) ({3}, {2}, {1})

T

Figure 5: Bijection between Pfn(123, 213) and T ≥2n+1 defined by Φn and Ψn for n = 0, 1, 2, 3.

in C ′ appears in f after the empty block in C, despite C ′ appearing after C. This contradicts how the empty
blocks are matched, so C ′ must be a closed cluster.

Suppose the elements in the blocks in C ′ are b+ 1, · · · , a, for some 0 ≤ b < a ≤ k, and suppose the empty
block in C is located to the left of exactly ` blocks in C ′, where 0 ≤ ` ≤ a− b− 1. Note that if the closed cluster
C ′ itself contains an empty block, then the empty block in C must appear after the empty block in C ′ by the
way empty blocks are matched, so C ′ has parameter at least `. Let f ′ be obtained from f by removing the
first cluster, and observe that f ′ ∈ Pfk(123, 213). Let f be obtained from f by removing all clusters up to and
including C ′, and observe that f ∈ Pfb(123, 213). If there exists some cluster C ′′ in f ′ but not in f that is an
open cluster, such that its empty block is in f , then the empty block in C ′′ appears in f after the one in C,
despite C ′′ appearing in f after C. This contradicts how the empty blocks are matched, hence such cluster C ′′

does not exist. Similarly, no such open cluster can have its empty block lying in C ′ and to the left of less than `
elements in C ′. Hence, the assumptions in condition C hold.

We can finally define Φn(f). Let T be the rooted tree obtained by attaching a path of length ` to the root of
Φb(f) and letting the other end of this path, say v, be the new root. By condition C, T is a full right subtree of
Φk(f ′). Let T ′ be the subtree of Φk(f ′) induced by v and all vertices not in T . From the definition of full right
subtree, the root of Φk(f ′) is in T ′. Let Φn(f) be the rooted tree defined as follows. Starting with Φk(f ′), we
view v as the new root, and detach T ′ from Φk(f ′). Then, we create a new left branch at v that consists of a
single edge and reattach T ′ to the other end of this edge. Finally, attach a path of length n− k − 1 to the old
root of Φk(f ′), which is in T ′, as a new left-most branch.

We need to check that condition C still holds for Φn(f) in both cases. This is clear in Case 1, as the operation
corresponding to the additional closed cluster in front does not modify Φk(f ′). In Case 2, since the first cluster
of f has its empty block in C ′, the assumptions in condition C can only hold if all clusters (and perhaps some
more) up to and including C ′ are removed. It follows that condition C holds for Φn(f) because it holds for
Φk(f ′) and the operations in Case 2 leaves T unchanged.

See Figure 6 for an example where we compute Φ20(f) for a parking function f ∈ Pf20(123, 213).

• Ψn : T ≥2n+1 → Pfn(123, 213).
The definition of Ψ0,Ψ1,Ψ2 and Ψ3 are given in Figure 5. We define Ψn inductively for n ≥ 4, and include

the following condition, analogous to the one in the definition of Φn, as part of the induction hypothesis, which
needs to be maintained throughout.

D Suppose T ∈ T ≥2n+1, ` ≥ 0, and T ∈ T ≥2k+1 with root v satisfies that the tree obtained by attaching a path
of length ` to v and declaring the other end of this path the new root is a full right subtree of T . Then
f = Ψk(T) is obtained by deleting a few leading clusters of total size n− k from f = Ψn(T). Moreover, if
f 6= f , the cluster C in f immediately preceding f is a closed cluster of parameter at least `, and no open
cluster in f that is not in f has its empty block either in f , or in C and to the left of less than ` blocks in
C.

ECA 5:1 (2025) Article #S2R2 21

Jun Yan

block {18, 20} {19} {15, 17} {16} ∅ {12, 14} {13} {9} ∅ {11}
cluster number 1 1 2 2 2 3 3 4 3 4

block {10} {6, 8} {7} {1} {5} {4} ∅ {3} ∅ {2}
cluster number 4 5 5 6 6 6 5 6 1 6

cluster number 1 2 3 4 5 6

cluster type open closed open closed open closed

parameter / 0 / 2 / 4

initialise−−−−−−−−→ Φ5(f6)
−−−−−−→

Φ8(f5)
−−−−−−→

Φ11(f4)
−−−−−−−→

Φ14(f3)
−−−−−−−→

Φ17(f2)
−−−−−−−→

Φ20(f1)
−−−−−−−→

Figure 6: An example computing Φ20(f), where f = ({18, 20}, {19}, {15, 17}, {16}, ∅, {12, 14}, {13},
{9}, ∅, {11}, {10}, {6, 8}, {7}, {1}, {5}, {4}, ∅, {3}, ∅, {2}). The cluster that each block belongs to and the cluster
types are listed in the tables above. For each i ∈ [6], fi is the parking function obtained by only retaining the
i-th to 6-th clusters of f . In each step, the edge added are highlighted in red.

ECA 5:1 (2025) Article #S2R2 22

Jun Yan

Now assume n ≥ 4 and let T ∈ T ≥2n+1. Identify the left-most leaf of T (the one obtained by starting at the
root of T and going left at every branching vertex until we reach a leaf) and look at the unique path connecting
it to the root of T . Depending on whether this path contains any branching vertex, we split it into two cases.

Case 1. The path connecting the left-most leaf of T to the root of T contains no branching vertex. In other
words, the left-most branch of T is just a path, say of length n− k. From assumption, the root of T has degree
at least 2.

If the root has degree 2, and the right branch is also just a path, then this path has length k + 1 and we
define Ψn(T) to be the parking function on [n] consisting of a single closed cluster of size n and parameter k.

If the root has degree 2, and the right branch contains a branching vertex, let 1 ≤ ` ≤ k − 1 be the number
of edges we need to traverse down the right branch until we encounter a branching vertex and let T ′ be the
subtree of T obtained by deleting the left branch of T and the initial path of length ` on the right branch. Note
that T ′ ∈ T ≥2k−`+1. If the root has degree at least 3, set ` = 0, and let T ′ be the subtree obtained by removing

the left-most branch from T , and note that T ′ ∈ T ≥2k−`+1 as well. In both of these cases, define Ψn(T) to be the
parking function on [n] obtained by attaching a closed cluster of length n− k+ ` and parameter ` to the front of
Ψk−`(T

′).

Case 2. The path connecting the left-most leaf of T to the root of T contains a branching vertex. Suppose we
traversed through n− k− 1 edges on this path starting at the left-most leaf before first encountering a branching
vertex v, where 1 ≤ k ≤ n− 2. Let T ′ be the tree obtained from T by removing this path of length n− k − 1
starting from the left-most leaf of T , removing the first edge in the left-most branch of T and reattaching the
remaining branch to the root of T , and finally declaring the v to be the new root. Since v is a branching vertex
in T , the degree of v in T ′ is at least 2 and thus T ′ ∈ T ≥2k+1. From assumption, the root of T has degree at least 2.

Suppose the root of T has degree 2, and the right branch is just a path of length `+ 1 ≥ 1. Note that this
right branch must be created by the last cluster in Ψk(T ′), which must be a closed cluster of parameter at least
`. In this case, define Ψn(T) to be the parking function on [n] obtained by adding the main portion of an open
cluster of length n− k to the front of Ψk(T ′), and placing its unique empty block to the left of exactly ` blocks
in the last cluster of Ψk(T ′).

If the root of T has degree 2, and the right branch contains a branching vertex, let ` ≥ 1 be the number of
edges we need to traverse down the right branch until we encounter a branching vertex u, let T1 be the subtree
of T induced by u and all vertices below, and suppose T1 contains b+ 1 edges. Then, T1 ∈ T ≥2b+1, and the rooted
tree obtained by attaching a path of length ` to u and declaring the other end of this path the new root is a full
right subtree of both T and T ′. If the root of T has degree at least 3, set ` = 0, and let T1 be the subtree of
T obtained by deleting the left-most branch. Again, note that if T1 contains b+ 1 edges, then T1 ∈ T ≥2b+1 and
is a full right subtree of T and T ′. In both cases, by condition D, the clusters in Ψb(T1) appear at the end of
Ψk(T ′), and the cluster preceeding Ψb(T1) in Ψk(T ′) is a closed cluster C with parameter at least `, and no
open cluster in Ψk(T ′) that is not in Ψb(T1) has its unique empty block either in Ψb(T1) or in C and to the left
of less than ` blocks in C. In both of these cases, define Ψn(T) to be the parking function on [n] obtained by
adding the main portion of an open cluster of length n− k to the front of Ψk(T ′), and placing the unique empty
block to the left of exactly ` blocks in C.

Note that condition D still holds for Ψn(T) by induction hypothesis and the observation that a full right
subtree of T is either T itself or a full right subtree of T ′.

• Proof of bijectivity.
We first show that every T ∈ T ≥2n+1 satisfies Φn(Ψn(T)) = T . Let T ′ be as in the definition of Ψn(T), and

let f ′ be Ψn(T) with the first cluster removed. Note that from the definition of Ψn(T), f ′ = Ψk(T ′) if T ′ has
k + 1 edges, so from induction hypothesis, T ′ = Φk(Ψk(T ′)) = Φk(f ′). From the definition of Φn, Φn(Ψn(T)) is
obtained by performing to Φk(f ′) = Φk(Ψk(T ′)) = T ′ the operation corresponding to the first cluster of Ψn(T),
which gives us exactly T .

Now we show that every f ∈ Pfn(123, 213) satisfies Ψn(Φn(f)) = f . Let f ′ be f with first cluster removed
and let k be such that f ′ ∈ Pfk(123, 213). Let T = Φn(f) and let T ′ be as in the definition of Ψn(T). By looking
through the cases in the definition of Φn and Ψn, we see that Φk(f ′) = T ′, so we have from induction hypothesis
that f ′ = Ψk(Φk(f ′)) = Ψk(T ′). From the definition of Ψn, Ψn(Φn(f)) = Ψn(T) is obtained by adding to the
front of Ψk(T ′) = f ′ the cluster corresponding to the operation changing T ′ = Φk(f ′) to T = Φn(f), which is
exactly the first cluster of f , finishing the proof.

3.3 An explicit formula for pfn(312, 321)

In [1], Adeniran and Pudwell obtained a formula for pfn(312, 321) expressed in terms of a sum over Cn,
similar to the ones we obtained during the proofs of Theorem 2.28 and 2.29. Using the same method, we prove a

ECA 5:1 (2025) Article #S2R2 23

Jun Yan

more explicit formula for pfn(312, 321).

Patterns σ1, σ2 pfn(σ1, σ2), 1 ≤ n ≤ 8 OEIS
312, 321 1, 3, 13, 63, 324, 1736, 9589, 54223 A362744

Theorem 3.1.

pfn(312, 321) =

(
3n+1
n

)
n+ 1

−
n−1∑
k=0

(
3n−3k+1
n−k

)
2k+1(n− k + 1)

.

Proof. For n ≥ 1, let

qn =
∑
C∈Cn

|u(C)|∏
i=1

(u(C)i + 1), pn =
∑
C∈Cn

|u(C)|−1∏
i=1

(u(C)i + 1),

and let Q(x) = 1 +
∑
n≥1 qnx

n and P (x) =
∑
n≥1 pnx

n be their generating functions. By Theorem 28 in [1],
pfn(312, 321) = pn for all n ≥ 1.

Let W (C) =
∏|u(C)|
i=1 (u(C)i + 1). Similar to the proofs of Theorem 2.28 and 2.29 above, and using the

canonical decomposition, we have for n ≥ 1,

qn =

n∑
k=1

(k + 1)
∑

C1∈Ca1
,··· ,Ck∈Cak

a1+···+ak=n−k
a1,··· ,ak≥0

k∏
j=1

W (Cj) =

n∑
k=1

(k + 1)
∑

a1+···+ak=n−k
a1,··· ,ak≥0

n∏
j=1

qaj .

And thus,

Q(x) = 1 +
∑
n≥1

qnx
n = 1 +

∑
n≥1

 n∑
k=1

(k + 1)
∑

a1+···+ak=n−k
a1,··· ,ak≥0

n∏
j=1

qaj

xn

= 1 +
∑
k≥1

(k + 1)xk

 ∑
a1,··· ,ak≥0

n∏
j=1

qajx
aj

 = 1 +
∑
k≥1

(k + 1)xk(Q(x))k.

Let Q(x) = xQ(x), then Q(x) = x(1 − Q(x))−2, so by Lemma 2.2, we have qn = [xn]Q(x) = [xn+1]Q(x) =
1

n+1 [xn](1− x)−2n−2 = 1
n+1

(
3n+1
n

)
.

Now let W ′(C) =
∏|u(C)|−1
i=1 (u(C)i + 1), so that pn =

∑
C∈Cn W

′(C). For all n > k ≥ 1 and C ∈ Cn,k,
let the canonical decomposition of C be C = U1 · · ·UkD1C1 · · ·DkCk. As usual, u(C) is formed by attaching
u(C1), · · · ,u(Ck) together and adding an entry of k to the front. Moreover, there exists a unique j ∈ [k] such
that Cj is the last among C1, · · · , Ck to have non-zero length, so the last entry of u(C) is the last entry of u(Cj)

as u(Cj′) is empty for all j < j′ ≤ k. Thus, W ′(C) = (k + 1)(
∏j−1
i=1 W (Ci)) ·W ′(Cj). When n = k, the unique

Catalan path C in Cn,n is the one with n up-steps followed by n down-steps, which satisfies W ′(C) = 1.
It follows that

P (x) =
∑
n≥1

pnx
n =

∑
n≥1

(∑
C∈Cn

W ′(C)

)
xn

=
∑
n≥1

xn +
∑
n≥1

xn
n−1∑
k=1

(k + 1)

k∑
j=1

∑
C1∈Ca1

,··· ,Cj∈Caj

a1+···+aj=n−k
a1,··· ,aj−1≥0,aj≥1

(
j−1∏
i=1

W (Ci)

)
·W ′(Cj)

=
∑
n≥1

xn +
∑
k≥1

(k + 1)xk
k∑
j=1

∑
C1∈Ca1 ,··· ,Cj∈Caj

a1,··· ,aj−1≥0,aj≥1

(
j−1∏
i=1

W (Ci)

)
·W ′(Cj)xa1+···+aj

=
∑
n≥1

xn +
∑
k≥1

(k + 1)xk
k∑
j=1

∑
a1,··· ,aj−1≥0,aj≥1

(
j−1∏
i=1

qaix
ai

)
· pajxaj

=
∑
n≥1

xn +
∑
k≥1

(k + 1)xk
k∑
j=1

(Q(x))j−1P (x)

ECA 5:1 (2025) Article #S2R2 24

Jun Yan

=
x

1− x
+

P (x)

Q(x)− 1

∑
k≥1

(k + 1)xk((Q(x))k − 1)

=
x

1− x
+

P (x)

Q(x)− 1
((1− xQ(x))−2 − (1− x)−2)

=
x

1− x
+

P (x)

Q(x)− 1
(Q(x)− (1− x)−2),

where in the last step we used Q(x) = (1− xQ(x))−2, which follows from the relation Q(x) = x(1−Q(x))−2 we

derived above. Solving this for P (x), we get P (x) = (Q(x)−1)(1−x)
2−x . Hence, for n ≥ 2, we have

pn = [xn]P (x) =
1

2
[xn]

(Q(x)− 1)(1− x)

1− 1
2x

=
1

2
[xn](Q(x)− 1)

∑
k≥0

xk

2k
− 1

2
[xn−1](Q(x)− 1)

∑
k≥0

xk

2k

=

n−1∑
k=0

qn−k
2k+1

−
n−2∑
k=0

qn−1−k
2k+1

=

n−1∑
k=0

(
3n−3k+1
n−k

)
2k+1(n− k + 1)

−
n−2∑
k=0

(
3n−3k−2
n−k−1

)
2k+1(n− k)

=

(
3n+1
n

)
2(n+ 1)

+

n−2∑
k=0

((
3n−3k−2
n−k−1

)
2k+2(n− k)

−
(
3n−3k−2
n−k−1

)
2k+1(n− k)

)

=

(
3n+1
n

)
2(n+ 1)

−
n−2∑
k=0

(
3n−3k−2
n−k−1

)
2k+2(n− k)

=

(
3n+1
n

)
n+ 1

−
n−1∑
k=0

(
3n−3k+1
n−k

)
2k+1(n− k + 1)

,

as required. The case when n = 1 is easy to verify.

4. Congruence classes of generalised parking functions

In this section, we apply similar algebraic techniques as in the previous sections to the work of Novelli
and Thibon in [8] on certain Hopf algebras of generalised parking functions, and obtain results on the graded
dimensions of these Hopf algebras, which is also the number of congruence classes of generalised parking functions
under several different congruence relations. We begin with some definitions.

For a function f : [n]→ [N], the evaluation of f is the sequence ev(f) of length N , whose j-th entry is the
number of i ∈ [n] with f(i) = j. The packed evaluation of f is the sequence pev(f) obtained by removing all the
zero entries from ev(f).

In [8], Novelli and Thibon studied Hopf algebras of two types of generalised parking functions. For m ≥ 1,
an m-multiparking function of size mn is a function f : [mn]→ [n] such that there exists an ordinary parking
function f satisfying ev(f) = m ev(f), and an m-parking function of size n is a function f : [n]→ [1 +m(n− 1)]
satisfying f(i) ≤ 1 +m(i− 1) for all i ∈ [n].

One way to obtain a new Hopf algebra is to take the quotient under certain congruences of generalised
parking functions. Therefore, the number of congruence classes of generalised parking functions is of interest.
Since our work is mostly computational, we will apply relevant results in [8] directly as black boxes, and refer
interested readers to the paper of Novelli and Thibon [8] for detailed definitions of these different congruences.

We begin with two results in the setting of m-multiparking functions.

m
hyposylvester classes of

OEIS
m-multiparking functions of size mn , 1 ≤ n ≤ 8

1 1, 3, 12, 55, 273, 1428, 7752, 43263 A001764
2 1, 4, 21, 126, 818, 5594, 39693, 289510 A003168
3 1, 5, 32, 233, 1833, 15180, 130392, 1151057 A364922=A243693
4 1, 6, 45, 382, 3498, 33696, 336549, 3453750 A243694
5 1, 7, 60, 579, 6017, 65732, 744264, 8656795 A243695

Theorem 4.1. For every m ≥ 1, the number p
(m)
n of hyposylvester classes of m-multiparking functions of size

mn is
1

n

n−1∑
k=0

(
n

k

)(
3n− k
2n+ 1

)
(m− 1)k.

ECA 5:1 (2025) Article #S2R2 25

Jun Yan

Proof. Note that every ordinary parking function of size n is the permutation of an increasing ordinary parking
function f with the same evaluation. Also, recall that every increasing ordinary parking function f of size n
corresponds bijectively to a Catalan path C of size 2n, and note that this bijection satisfies pev(f) = u(C). From
definition, for every m-multiparking function f of size mn, there exists an ordinary parking function f of size n,
which can be chosen to be increasing, that satisfies ev(f) = m ev(f), and thus pev(f) = m pev(f) = mu(C).

By Lemma 3.2 and Theorem 3.4 in [8], m-multiparking functions in the same hyposylvester class have
the same evaluation and thus the same packed evaluation. Moreover, for every possible evaluation α of an
m-multiparking function, the number of hyposylvester classes that contain m-multiparking functions with

common evaluation α depends only on their common packed evaluation β, and is equal to
∏|β|
i=2(1 + βi). Putting

all of these together, we see that the number of hyposylvester classes of m-multiparking functions of size mn is

p(m)
n =

∑
C∈Cn

|u(C)|∏
i=2

(1 +mu(C)i) .

We now proceed similarly to the proofs of Theorem 2.28, 2.29 and 3.1 above. For n ≥ 1, let q
(m)
n =∑

C∈Cn
∏|u(C)|
i=1 (1 +mu(C)i), and consider the generating functions Qm(x) = 1 +

∑
n≥1 q

(m)
n xn and Pm(x) =∑

n≥1 p
(m)
n xn. By using the canonical decompositions of Catalan paths, we have

Qm(x) = 1 +
∑
k≥1

(1 +mk)xk(Qm(x))k

= 1 +
xQm(x)

1− xQm(x)
+

mxQm(x)

(1− xQm(x))2
=

1 + (m− 1)xQm(x)

(1− xQm(x))2
.

Thus, Qm(x) = xQm(x) satisfies Qm(x) = x · 1+(m−1)Qm(x)

(1−Qm(x))2
. Using the canonical decompositions again, we get

Pm(x) =
∑
k≥1 x

k(Qm(x))k = Qm(x)

1−Qm(x)
. Therefore, by Lemma 2.2, we have

p(m)
n = [xn]Pm(x) =

1

n
[xn−1]

(
x

1− x

)′(
1 + (m− 1)x

(1− x)2

)n
=

1

n
[xn−1]

(1 + (m− 1)x)n

(1− x)2n+2

=
1

n

n−1∑
k=0

(
n

k

)
(m− 1)k[xn−1−k]

1

(1− x)2n+2

=
1

n

n−1∑
k=0

(
n

k

)(
3n− k
2n+ 1

)
(m− 1)k,

as required.

m
metasylvester classes of

OEIS
m-multiparking functions of size mn , 1 ≤ n ≤ 8

1 1, 3, 14, 87, 669, 6098, 64050, 759817 A132624
2 1, 4, 27, 254, 3048, 44328, 755681, 14750646 A243696
3 1, 5, 44, 551, 8919, 176634, 4130208, 111222029 A243697
4 1, 6, 65, 1014, 20598, 514604, 15240261, 521457190 A243698
5 1, 7, 90, 1679, 40977, 1234002, 44162294, 1829650545 A243699

Theorem 4.2. For every m ≥ 1, the number p
(m)
n of metasylvester classes of m-multiparking functions of size

mn is equal to ∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .

Consequently, p
(m)
n =

∑n
k=1 pn,k, where

pn,k =

1, if k = n,

(1 +m(n− k))

n−1∑
i=n−k

i∑
j=k+1−n+i

pi,j , if 1 ≤ k ≤ n− 1.

Furthermore, the sequence p
(m)
n satisfies

x

1− x
=

∞∑
n=1

p(m)
n

xn(1− x)n∏n
`=1(1 +m`x)

.

ECA 5:1 (2025) Article #S2R2 26

Jun Yan

Proof. By Theorem 3.9 in [8], for every possible evaluation of an m-multiparking function α, the number of
metasylvester classes containing m-multiparking function with common evaluation α depends only on their

common packed evaluation β, and is equal to
∏|β|
i=2(1 +

∑|β|
j=i βj). Consequently, similar to the proof of Theorem

4.1 above, we see that the number p
(m)
n of metasylvester classes of m-multiparking functions of size mn is equal

to ∑
C∈Cn

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 .

We now proceed similarly to the proof of Theorem 2.31. Let W (C) =
∏|u(C)|
i=2 (1 +m

∑|u(C)|
j=i u(C)j), and let

pn,k =
∑
C∈Cn,k

W (C), so that p
(m)
n =

∑n
k=1 pn,k. Note that pn,n = 1 as Cn,n contains only the Catalan path

consisting of n up-steps followed by n down-steps. For n > k ≥ 1 and C ∈ Cn,k, we have |u(C)| ≥ 2. Let i′ ∈ [k]
be the length of the first block of down-steps in C and let C ′ ∈ Cn−i′,j be obtained by deleting the first peak of
C. Note that u(C ′)t = u(C)t+1 for all 2 ≤ t ≤ |u(C ′)| = |u(C)| − 1. Therefore,

W (C) =

|u(C)|∏
i=2

1 +m

|u(C)|∑
j=i

u(C)j

 =

1 +m

|u(C)|∑
j=2

u(C)j

 |u(C)|∏
i=3

1 +m

|u(C)|∑
j=i

u(C)j

=

1 +m

|u(C)|∑
j=2

u(C)j

W (C ′) = (1 +m(n− k))W (C ′).

Thus, we have the recurrence relation

pn,k =
∑

C∈Cn,k

W (C) =

k∑
i′=1

n−i′∑
j=k−i′+1

∑
C′∈Cn−i′,j

(1 +m(n− k))W (C ′)

= (1 +m(n− k))

k∑
i′=1

n−i′∑
j=k−i′+1

pn−i,j = (1 +m(n− k))

n−1∑
i=n−k

i∑
j=k+1−n+i

pi,j .

In particular, we have pn,1 = (1 +m(n− 1))
∑n−1
j=1 pn−1,j = (1 +m(n− 1))p

(m)
n−1.

For every k ≥ 0, let Pk(x) =
∑∞
n=k+1 pn,n−kx

n−k−1 be the generating function of the terms lying on the k-th

diagonal. Then, Pk(0) = [x0]Pk(x) = pk+1,1 = (1 +mk)p
(m)
k . For k ≥ 0, using the recurrence above, we have

Pk+1(x) =

∞∑
n=k+2

pn,n−k−1x
n−k−2

=

∞∑
n=k+2

(1 +m(k + 1))

n−1∑
i=k+1

k∑
j=0

pi,i−jx
n−k−2

= (1 +m(k + 1))x−k
k∑
j=0

∞∑
i=k+1

pi,i−jx
i−1

∞∑
n=i+1

xn−i−1

=
1 +m(k + 1)

xk(1− x)

k∑
j=0

∞∑
i=k+1

pi,i−jx
i−1.

Let Sk(x) =
∑k
j=0

∑∞
i=k+1 pi,i−jx

i−1, then we have xkPk+1(x) = 1+m(k+1)
1−x Sk(x). Furthermore, we have

Sk+1(x) =

k+1∑
j=0

∞∑
i=k+2

pi,i−jx
i−1

= Sk(x)−
k∑
j=0

pk+1,k+1−jx
k +

∞∑
i=k+2

pi,i−k−1x
i−1

= Sk(x)−
k+1∑
j=1

pk+1,jx
k + xk+1Pk+1(x)

= Sk(x)− p(m)
k+1x

k +
(1 +m(k + 1))x

1− x
Sk(x)

ECA 5:1 (2025) Article #S2R2 27

Jun Yan

=

(
1 +m(k + 1)x

1− x

)
Sk(x)− p(m)

k+1x
k,

and therefore by telescoping,

∞∑
k=1

p
(m)
k

xk(1− x)k∏k
`=1(1 +m`x)

=

∞∑
k=0

p
(m)
k+1

xk+1(1− x)k+1∏k+1
`=1 (1 +m`x)

=

∞∑
k=0

((
1 +m(k + 1)x

1− x

)
Sk(x)− Sk+1(x)

)
x(1− x)k+1∏k+1
`=1 (1 +m`x)

=
1 +mx

1− x
x(1− x)

(1 +mx)
S0(x) +

∞∑
k=1

Sk(x)

(
1 +m(k + 1)x

1− x
x(1− x)k+1∏k+1
`=1 (1 +m`x)

− x(1− x)k∏k
`=1(1 +m`x)

)

=xS0(x) =

∞∑
i=1

pi,ix
i =

x

1− x
,

as required.

Note that setting m = 1 finishes the proof of Theorem 2.30, and shows that both the sequence pkn(312) of
size n parking functions whose parking permutations avoid the pattern 312, and the sequence pn of the number
of metasylvester classes of size n parking functions match the sequence A132624 in OEIS. The latter confirms a

conjecture of Novelli and Thibon in [8]. It remains to be seen whether more explicit formulas exist for p
(m)
n .

We now prove two results on m-parking functions. Let C(m)
n be the set of m-Catalan paths of length (m+ 1)n,

each consists of n up-steps of size m, and mn down-steps of size 1, and never goes below the x-axis. Setting
m = 1 recovers the usual Catalan paths. For every increasing m-parking function f of size n and for every
j ∈ [mn] in increasing order, draw t up-steps of size m followed by a down-step of size 1 if |f−1(j)| = t. It is easy
to see using the definition that this gives a bijective correspondence between increasing m-parking functions of

size n and the set C(m)
n .

The number of hyposylvester classes of m-parking functions of size n is known to be 1
2mn+1

(
(2m+1)n

n

)
[8]. In

the following theorem, analogous to results above, we express the number of metasylvester classes of m-parking

functions of size n as a sum over C(m)
n of terms involving entries in u(C), which is defined in the same way as

before for ordinary Catalan paths. Unfortunately, the method of deleting the first peak that we used in the
proof of Theorem 4.2 does not translate well to the setting of m-Catalan paths, and we could not obtain more
explicit expressions. We thank Jared León for his programming help for the following table of values.

m
metasylvester classes of

OEIS
m-parking functions of size n , 1 ≤ n ≤ 8

1 1, 3, 14, 87, 669, 6098, 64050, 759817 A132624
2 1, 5, 45, 585, 9944, 208783, 5218212, 151283473 A243678
3 1, 7, 94, 1879, 50006, 1663866, 66483078, 3101878511 A243679
4 1, 9, 161, 4353, 158035, 7212505, 396783811, 25558807077 A243682
5 1, 11, 246, 8391, 386211, 22414326, 1571290734, 129166342089 A243683

Theorem 4.3. The number of metasylvester classes of m-parking functions of size n is

∑
C∈C(m)

n

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 .

Proof. Every m-parking function f of size n is the permutation of an increasing m-parking function f , and every
increasing m-parking function f of size n corresponds bijectively to an m-Catalan path C of length (m+ 1)n,
with pev(f) = u(C). Consequently, similar to the proof of Theorem 4.2 and using Theorem 3.9 in [8], we see
that the number of metasylvester classes of m-multiparking functions of size n is equal to

∑
C∈C(m)

n

|u(C)|∏
i=2

1 +

|u(C)|∑
j=i

u(C)j

 ,

as required.

Finally, we give an explicit formula for the number of hypoplactic classes of m-parking functions of size
n, which turns out to coincide with the small (m + 1)-Schröder numbers defined by Yang and Jiang in [12],
confirming some conjectures about this family of sequences on OEIS.

ECA 5:1 (2025) Article #S2R2 28

Jun Yan

m
hypoplactic classes of

OEIS
m-parking functions of size n , 1 ≤ n ≤ 8

1 1, 3, 11, 45, 197, 903, 4279, 20793 A001003
2 1, 5, 33, 249, 2033, 17485, 156033, 1431281 A034015
3 1, 7, 67, 741, 8909, 113107, 1492103, 20251945 A243675=A371398
4 1, 9, 113, 1649, 26225, 440985, 7711009, 138792929 A243676
5 1, 11, 171, 3101, 61381, 1285663, 28015735, 628599577 A243677

Theorem 4.4. The number of hypoplactic classes of m-parking functions of size n is

1

n

n∑
k=1

(
mn

k − 1

)(
n

k

)
2k−1.

Proof. By Section 2.6 in [8], the number of hypoplactic classes containing m-parking functions with common
evaluation α depends only on their common packed evaluation β, and is equal to 2|β|−1. As a result, similar to
the proof of Theorem 4.3 and using the bijection between increasing m-parking functions and m-Catalan paths,
the number of hypoplactic classes of m-parking functions of size n is equal to∑

C∈C(m)
n

2|u(C)|−1.

Note that for every C ∈ C(m)
n , |u(C)| is exactly the number of peaks in C. Since the number of m-Catalan

paths with length (m+ 1)n and exactly k peaks is known [12] to be the m-Narayana numbers N
(m)
n,k = 1

n

(
mn
k−1
)(
n
k

)
,

it follows that the number of hypoplactic classes of m-parking functions of size n is equal to

1

n

n∑
k=1

(
mn

k − 1

)(
n

k

)
2k−1,

by splitting the sum over m-Catalan paths according to the number of peaks.

Acknowledgement

The author is supported by the Warwick Mathematics Institute Centre for Doctoral Training, and gratefully
acknowledges funding from the UK EPSRC (Grant number: EP/W523793/1).

References

[1] A. Adeniran and L. Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023),
S2R17.

[2] L. Colmenarejo, P. E. Harris, Z. Jones, C. Keller, A. R. Rodŕıguez, E. Sukarto, and A. R. Vindas-Meléndez,
Counting k-Naples parking functions through permutations and the k-Naples area statistic, Enumer. Comb.
Appl. 1:2 (2021), S2R11.

[3] A. M. Garsia and M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion, J. Algebraic
Combin. 5 (1996), 191–244.

[4] I. Goulden and D. Jackson, Combinatorial Enumeration, Dover Publications (2004), 1-28.

[5] V. Jeĺınek and T. Mansour, Wilf-equivalence on k-ary words, compositions, and parking functions, Electron.
J. Combin. 16 (2009), R58.

[6] C. Ji and J. Propp, Brussels sprouts, noncrossing trees, and parking functions, Enumer. Comb. Appl. 1:1
(2021), S2R1.

[7] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. in Appl. Math. 27:2-3 (2001),
510–530.

[8] J.-C. Novelli and J.-Y. Thibon, Hopf algebras of m-permutations, (m+1)-ary trees, and m-parking functions,
Adv. in Appl. Math. 117 (2020), 102019.

[9] D. Qiu, Patterns in ordered set partitions and parking functions (slides), Permutation Patterns 2016.
Available at https://mathweb.ucsd.edu/~duqiu/files/PP16.pdf.

[10] D. Qiu and J. Remmel, Patterns in words of ordered set partitions, J. Comb. 10:3 (2019), 433-490.

[11] C. H. Yan, Parking functions, Handbook of Enumerative Combinatorics, Chapman and Hall/CRC (2015),
835–894.

[12] S.-L. Yang and M.-Y. Jiang, The m-Schröder paths and m-Schröder numbers, Discrete Math. 344:2 (2021),
112209.

ECA 5:1 (2025) Article #S2R2 29

https://mathweb.ucsd.edu/~duqiu/files/PP16.pdf

	Introduction
	Pattern avoidance in parking permutations
	Avoiding five patterns
	Avoiding four patterns
	Avoiding three patterns
	Avoiding two patterns
	Avoiding one pattern

	Pattern avoidance in block permutations
	Bijective proof of Theorem 1.1
	Bijective proof of Theorem 1.2
	An explicit formula for `39`42`"613A``45`47`"603Apfn(312,321)

	Congruence classes of generalised parking functions

