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Abstract: We further generalize Berlow’s stack sorting map sT to s(T,k), where instead of avoiding all permu-
tations in T , the stack contains at most k permutations from a restricted set T . We introduce the (T, k)-machine
as well, defined as the composition of West’s stack sorting map s and s(T,k), as a parallel to Cerbai, Claesson,
and Ferrari’s σ−machine. We show that for every s(T,k), there exists an equivalent sT ′ and give an explicit
construction of T ′. We then characterize the permutations in the preimage of idn in s({12,21},1) and prove that

the size of the preimage is the (n − 1)th Catalan number. We also demonstrate that the s({12,21},1) map and
the ({12, 21}, 1)-machine sort all permutations after a finite number of repeated applications.
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1. Introduction

The stack sorting map s was first introduced by West [5] in 1990. The map sends permutations through a
stack that always avoids the permutation 21 when read from top to bottom. Knuth [4] first showed that a
permutation π is sorted by s if and only if π avoids the permutation 231, thus also showing that the number of
permutations of length n that are sorted by s is 1

n+1

(
2n
n

)
, or the nth Catalan number [4].

More recently, the map s was generalized by Cerbai, Claesson, and Ferrari [2] in 2020 to the map sσ.
Whereas the stack in s avoids the permutation 21, the stack in sσ avoids a permutation σ. Cerbai, Claesson,
and Ferrari also introduced the σ-machine, defined as the composition of s and sσ. With stacks that avoid a
single permutation, the natural next step was to avoid multiple permutations. Shortly after, Berlow [1] extended
sσ to sT , where T is a set of permutations and the stack in sT must avoid all permutations in T .

We further generalize s to s(T,k). We define the maps s(T,k) that avoid containing more than k distinct
permutations from T in the stack at once. More specifically, the map sorts a permutation π via the following
stack sorting algorithm: If adding the leftmost element of the input to the stack keeps the stack (T, k)-avoiding,
push that element into the stack. Otherwise, pop the top element off the stack and append it to the output.
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Figure 1: The stack sorting map s({321,132,213},0) on π = 135264.
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Figure 2: The stack sorting map s({321,132,213},1) on π = 135264.
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Figure 3: The stack sorting map s({321,132,213},2) on π = 135264.

Figures 1, 2, and 3 show the sorting process for π = 135264, with T = {321, 132, 213} and k set to 0, 1, and
2, respectively, with each value of k producing a different result. Note that when k = 0, the map is identical to
Berlow’s map by definition.

We prove a number of analogues of classical results for West’s stack sorting map for s(T,k). In Section 2,
we establish preliminaries. In Section 3, we prove the existence of an equivalence between the s(T,k) maps
and Berlow’s [1] sT maps (Lemma 3.1). In Section 4, we characterize the one-stack-sortable permutations
(Theorem 4.1) and prove that all permutations are sortable by repeated sorts (Theorem 4.2) for T = {12, 21}
and k = 1. We study the map s({12,21},1) specifically because it is the closest parallel to the original 21-avoiding
stack sorting map s. In Section 5, we establish (T, k)-machines, defined as (s ◦ s(T,k)), as a natural analogue to
Cerbai, Claesson, and Ferrari’s [2] machine. We also prove that the ({12, 21}, 1)−machine eventually sorts all
permutations (Theorem 5.1).

2. Preliminaries

For a permutation π = π1π2 . . . πn ∈ Sn, we let idn = 12 . . . n and invn = n(n − 1) . . . 1. We also use π ± k to
denote (π1±k)(π2±k) · · · (πn±k), use rev(π) to denote πnπn−1 . . . π1, and use π[a:b] to denote πaπa+1 · · ·πb−1πb
for integers 1 ≤ a < b ≤ n. We let |π| = n, and refer to this quantity as the length of π. We define the lead
length of a permutation, denoted by lead(π), as the greatest integer i such that π[1:i] = 12 . . . i if π1 = 1, and 0
otherwise. For a permutation π and a set of indices A = {a1, a2, . . . , ai} sorted in ascending order, we define π[A]

as πa1πa2 . . . πai . In addition, for a set of permutations T and a < |T |, let longa(T ) be the sum of the lengths
of the a+ 1 longest permutations in T . For two stack sorting maps q and r, we say that they are equivalent if
for all permutations π the sorting process for q(π) and r(π) are the same; that is, at every point in the process,
q(π) and r(π) undergo identical push and pop operations.

Given two permutations π and σ, we say π contains σ if there exist a1, a2, . . . , ak such that the sub-
permutation πa1πa2 . . . πak is order-isomorphic to σ. Otherwise, we say π avoids σ. The set of all permutations
that avoid σ is denoted by Av(σ); the set of all permutations of length n that avoid σ is denoted by Avn(σ).
Furthermore, for a set T of permutations and a nonnegative integer k, we say π is (T, k)-avoiding if π contains
at most k elements of T . The set of all permutations that are (T, k)-avoiding is denoted by Avk(T ), while the
set of permutations of length n that are (T, k)-avoiding is denoted by Avkn(T ). Finally, a set of permutations C
is called a permutation class if for all π ∈ C, if π contains σ then σ ∈ C.

Throughout the paper, we use t to denote s({12,21},1). We also make frequent use of a well-known result
from Knuth [4].

Lemma 2.1 (Knuth [4]). A permutation π ∈ Sn satisfies s(π) = idn if and only if π ∈ Av(231). Furthermore,
the number of permutations π ∈ Sn such that s(π) = idn is 1

n+1

(
2n
n

)
.
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3. Equivalence to sT

In this section, we show that every s(T,k) map is equivalent to a sT ′ map for some T ′.

Theorem 3.1. The maps s(T,k) and sT ′ are equivalent, where T ′ =
longk(T )⋃
i=1

Si \Avki (T ).

Proof. It suffices to show that a permutation π contains a permutation in T ′ if and only if it contains at least
k + 1 permutations in T . If π contains at least k + 1 permutations in T , let k + 1 of those permutations be
t1, t2, . . . , tk+1 and their corresponding order-isomorphic contained permutations in π be π[A1], π[A2], . . . , π[Ak+1].
Then, π contains the permutation σ = π[A], where A = A1 ∪ A2 ∪ . . . ∪ Ak+1. Furthermore, we have that

σ /∈ Avk(T ), as σ contains t1, t2, . . . , tk+1. However, since |A| ≤ |A1|+ |A2|+ · · ·+ |Ak+1| ≤ longk(T ), it follows
that |σ| ≤ longk(T ); it follows that σ ∈ T ′. For the converse, if π contains a permutation σ ∈ T ′, we have that
σ must contain at least k + 1 permutations in T by definition. Thus, π contains at least k + 1 permutations in
T because π contains σ. Therefore, the (T, k)-avoiding stack is equivalent to the T ′-avoiding stack.

While T ′ is a finite set of permutations, it is not necessarily the smallest possible set, nor are the permutations
in it necessarily the ones of least length. As a specific example, take s({12,21},1), where T = {12, 21}, k = 1, and
longk(T ) = long1({12, 21}) = |12|+ |21| = 4; then, the corresponding T ′ contains 26 permutations:

T ′ =

4⋃
i=1

Si \Av1
i ({12, 21})

= (S1 \ {1}) ∪ (S2 \ {12, 21}) ∪ (S3 \ {123, 321}) ∪ (S4 \ {1234, 4321})
= (∅ ∪∅ ∪ S3 ∪ S4) \ {123, 321, 1234, 4321}
= (S3 ∪ S4) \ {123, 321, 1234, 4321}
= {132, 213, 231, 312, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431,

3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312}

However, a much smaller restricted set exists that still generates an equivalent map.

Lemma 3.1. The maps s({12,21},1) and s{132,213,231,312} are equivalent.

Proof. For all permutations π, we have that π ∈ Av(132, 213, 231, 312) if and only if π ∈ Av1(12, 21), because
a permutation that contains at least one of {132, 213, 231, 312} must contain both 12 and 21 and vice versa.
Thus, the stack sorting process is the same for both maps, so they are equivalent.

4. The Properties of s({12,21},1)

We begin by proving supporting lemmas that will build up to a full characterization of the preimage of idn
under t. Given a permutation π ∈ Sn, we note that t(π)n = π1, because π1 is pushed into the stack first and is
popped out last.

Proposition 4.1. For all π ∈ Sn, we have that

t(π)n = π1.

Next, we prove that for the permutations π with π1 = |π|, the maps t and s are equivalent.

Lemma 4.1. For all π ∈ Sn such that π1 = n, we have that

t(π) = s(π).

Proof. We have that π1 = n is always at the bottom of the stack. Then the stack must contain the permutation
12 when it has more than 1 element. Therefore, the stack always avoids 21, so t is equivalent to s by definition.

Now, we can prove Theorem 4.1.

Theorem 4.1. For π ∈ Sn, we have t(π) = idn if and only if π[2:n] ∈ Avn−1(231) and π1 = n.

Proof. Let π ∈ Sn satisfy t(π) = idn. Then t(π)n = n, so π1 = n by Proposition 4.1. Next, by Lemma 4.1,
we have that t(π) = s(π), so s(π[2:n]) = idn−1. It follows that π[2:n] ∈ Av(231) by Lemma 2.1. Conversely, let
π ∈ Sn be of the form described in the theorem statement. Because π1 = n is the largest element in π and
π[2:n] ∈ Avn−1(231), we have that π ∈ Avn(231). Then t(π) = s(π) = idn by Lemmas 2.1 and 4.1.
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A direct corollary is the enumeration of the one-stack-sortable permutations under t.

Corollary 4.1. The number of permutations π ∈ Sn such that t(π) = idn is 1
n

(
2n−2
n−1

)
.

Defant and Zheng [3] proved that the set of one-stack-sortable permutations under the map (s ◦ s12) is a
permutation class. However, this is not the case for t, as the permutation 4213 is one-stack-sortable, but the
contained permutation 213 is not.

Remark 4.1. The set of one-stack-sortable permutations under t is not a permutation class.

Now, to prove Theorem 4.2, we first characterize the behavior of t(π) when π1 = 1.

Lemma 4.2. For π ∈ Sn, if lead(π) ≥ 1 then

t(π)[n−lead(π):n] = (lead(π) + 1)lead(π) . . . 1.

Proof. All of 12 . . . lead(π) will enter the stack, so the stack is 12-avoiding. The remaining inputs are greater
than lead(π), so 12 . . . lead(π) will remain in the stack until the input is empty. When lead(π) + 1 is pushed,
it will pop all elements greater than lead(π) + 1. Since the remaining inputs are greater than lead(π) + 1, the
elements (lead(π) + 1) . . . 21 remain in the stack until they are popped at the end.

Next, we characterize the behavior of t(π) when π|π| = 1.

Lemma 4.3. For π ∈ Sn and an integer 1 ≤ i ≤ n− 1, if π[n−i+1:n] = i(i− 1) . . . 1, there exists 1 ≤ j ≤ n− i
such that t(π)[j:j+i−1] = 12 . . . i.

Proof. Since i < n, we have π1 6= i, so π1 > i. Thus, when i is pushed, the stack becomes 21-avoiding. Then,
after (i− 1) . . . 21 is pushed, the stack will read from top to bottom as

12 . . . i . . . π1.

Since the input is empty, the elements above will be popped in the stated order. At least 1 element (the element
π1) is popped after i is, so the lemma statement follows.

Thirdly, we characterize the behavior of t(π) when π1 6= 1 and π|π| 6= 1.

Lemma 4.4. For π ∈ Sn and positive integers i, j where 2 ≤ i, if π[i:i+j−1] = 12 . . . j, there exists 1 ≤ ` < i
such that t(π)[`:`+j−1] = 12 . . . j.

Proof. As in Lemma 4.3, we have π1 > j ≥ 1. When πi = 1 is pushed, the stack becomes 21-avoiding. Let a be
the total number of elements in the stack that have not been popped when πi is pushed. Since π1 cannot be
popped until the input is empty, we have a < i− 1. Next, when πh is pushed for i+ 1 ≤ h ≤ i+ j, it pops only
πh−1 and keeps the stack 21-avoiding. Thus t(π)[a+1:a+j] = π[i:i+j−1] = 12 . . . j. Since a < i− 1, we have that
` := a+ 1 < i.

We end by showing that repeatedly applying t eventually increases the lead length of π.

Lemma 4.5. For π ∈ Sn, if there exists an a ≥ 0 such that lead(ta(π)) ≥ 1, there also exists a b > a such that
lead(tb(π)) > lead(ta(π)).

Proof. By Lemmas 4.2 and 4.3, there exists 1 ≤ i ≤ n− lead(ta(π)) such that

ta+2(π)[i:i+lead(ta(π))] = 12 . . . (lead(ta(π)) + 1).

If i = 1 then we are done. Otherwise, Lemma 4.4 concludes.

Now, we can prove Theorem 4.2.

Theorem 4.2. For every π ∈ Sn, there exists a positive integer i such that ti(π) = idn.

Proof. By Lemma 4.4, there exists an a ≥ 0 such that ta(π)1 = 1. Then by Lemma 4.5 there exists some b > a
such that lead(tb(π)) = n. By definition, we have tb(π) = idn.

As all permutations are eventually sorted by t, a natural question is what permutations π ∈ Sn take the
maximal number of sorts and what that maximal sort time is. Let mt(π) be the smallest nonnegative integer j
such that tj(π) = idn.

Conjecture 4.1. Fix a positive integer n ≥ 3. When n is odd, we conjecture that maxπ∈Sn
(mt(π)) = 2n− 3.

When n is even, we conjecture that maxπ∈Sn
(mt(π)) = 2n− 4.

ECA 5:3 (2025) Article #S2R22 4
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In the following two lemmas, we partially resolve the conjecture by showing that there exist permutations
of both odd and even length that require the conjectured maximum number of sorts. We begin with the
permutations of odd length.

Lemma 4.6. For odd n ≥ 3 and π ∈ Sn, if π[n−1:n] = 1n and t(π[1:n−2]) = invn−2 + 1, we have that
mt(π) = 2n− 3.

Proof. First, note that mt(213) = 3, so the statement holds for n = 3. Next, assume the statement is true for
all permutations of length i ≥ 3 for some odd i and proceed by induction. Let n = i + 2 and π ∈ Sn be an
arbitrary permutation in the form of the lemma statement. Since t(π[1:n−2]) = invn−2 + 1, we have π1 = 2 by
Proposition 4.1. Thus, πn−2 > π1, so the stack avoids 12 when πn−1 = 1 is pushed. Then 1 will pop out all of
the stack except π1 = 2. Hence, π[2:n−2] will sort to invn−3 + 2. It follows that t(π) = (n− 1)(n− 2) · · · 431n2.
Then, we have t4(π) = 34 · · · (n− 3)(n− 2)12(n− 1)n. Since 1, 2 and n, (n− 1) are adjacent, t4(π) is isomorphic
to 23 · · · (n− 4)(n− 3)1(n− 2), which is a permutation of length n− 2 = i in the form described in the lemma
statement. Thus mt(π) = mt(t

4(π)) + 4 = (2(n− 2)− 3) + 4 = 2n− 3.

From Lemma 4.6, we have the following corollary.

Corollary 4.2. For all odd n, there are at least 1
n−1

(
2n−4
n−2

)
permutations π ∈ Sn such that mt(π) = 2n− 3.

We now prove the existence of even-length permutations that reach the conjectured bound.

Lemma 4.7. For even n ≥ 4 and π ∈ Sn, if π1πn−1πn = n(n−1)1 and π[2:n−2] avoids 231 then mt(π) = 2n−4.

Proof. First, note that mt(4231) = 4, so the lemma holds for n = 4. Next, assume the statement is true
for all permutations of length i ≥ 4 for some even i and proceed by induction. Let n = i + 2 and π ∈ Sn
be a permutation of the form specified in the lemma statement. It follows from Lemmas 2.1 and 4.1 that
t(π) = 23 . . . (n− 2)1(n− 1)n, as π[2:n−2] is sorted to 23 . . . (n− 2); then, when n− 1 is pushed in, it pops out
everything in the stack except for n, followed by 1 being pushed in and the entire stack being popped out.

The next application of t is as follows: first, 23 · · · (n−2) is pushed into the stack. Second, 1 pops (n−2) · · · 43
to the output before being pushed into the stack. Third, n − 1 pops 1 and (n − 1)n is pushed into the stack.
Fourth, n(n− 1)2 is popped to the output. Therefore, t2(π) = (n− 2)(n− 3) · · · 31n(n− 1)2.

Then, for the third application of t, the elements (n−2)(n−3) · · · 31 are first pushed into the stack. Second,
n pops (n−3)(n−4) · · · 31 to the output before being pushed into the stack. Third, n−1 pops n and is pushed
into the stack. Fourth, 2 pops n − 1 and is pushed into the stack. Fifth, 2(n − 2) is popped to the output.
Thus, t3(π) = 134 · · · (n− 3)n(n− 1)2(n− 2).

Lastly, the fourth application of t is as follows: first, 134 · · · (n− 3)n is pushed into the stack. Second, n− 1
is pushed into the stack, popping n in the process. Third, 2 pops (n− 1)(n− 3)(n− 2) · · · 3 to the output and is
pushed into the stack. Fourth, (n− 2) pops 2 and is pushed into the stack. Fifth, 21 is popped to the output.

As a result, we have that t4(π) = n(n− 1)(n− 3)(n− 4) · · · 3(n− 2)21. However, because n and (n− 1) are
adjacent and 2 and 1 are adjacent, we have that t4(π) is equivalent to (n−2)(n−4)(n−5) · · · 2(n−3)1, which is a
length n−2 = i in the form in the lemma statement. Thus, mt(π) = mt(t

4(π))+4 = (2(n−2)−4)+4 = 2n−4.

From Lemma 4.7, we have the following corollary.

Corollary 4.3. For all even n, there are at least 1
n−2

(
2n−6
n−3

)
permutations π ∈ Sn such that mt(π) = 2n− 4.

Note that there exist permutations of even length that take the maximal number of sorts that are not
characterized by Lemma 4.7; for example, for n = 4, the permutation π = 2314 does not have π1π3π4 = 431,
but still takes 4 sorts to reach the identity, as

t4(2314) = t3(3142) = t2(1423) = t(4321) = 1234.

We also establish a necessary condition for the permutations that are minimally sorted.

Lemma 4.8. If π ∈ Sn satisfies mt(π) ≥ mt(π
′) for all π′ ∈ Sn then tmt(π)−1(π) = invn.

Proof. Let σ ∈ Sn satisfy σi = π(n−i+1) for 1 ≤ i ≤ n. Then tmt(π)(σ) = invn by symmetry, so tmt(π)+1(σ) = idn.

If tmt(π)−1(σ) = idn also, then tmt(π)−1(π) = invn, and we are done. Otherwise, we have mt(σ) = mt(π) + 1.
Then mt(π) < mt(σ), a contradiction.

Additionally, we partially characterize the two-stack-sortable permutations under t.

Lemma 4.9. Given π ∈ Sn such that πi = n and i 6= 1, if t2(π) = idn then

π1 < π2 < · · · < πi−1 < πi = n.

ECA 5:3 (2025) Article #S2R22 5



Jared Mi, Jeffrey Xu, and Jason Yang

Proof. Assume otherwise. Then, there must exist a smallest j < i such that πj > πj+1. If j = 1, then the stack
is 21-avoiding after π2 is pushed. Next, consider whether the stack is 21-avoiding or 12-avoiding after the first
i − 1 elements have been pushed. If the stack is 21-avoiding, then πi = n will pop πi−1 and t(π)1 6= n. If the
stack is 12-avoiding, then π2 must have been popped before πi and so t(π)1 6= n. If j > 1, then during the
sorting process, when πj+1 enters the stack, πj is first popped. Therefore, t(π)1 6= n, so by Proposition 4.1, we
have that t2(π) 6= idn, a contradiction.

This leads to a method for generating length n two-stack-sortable permutations from length n−1 two-stack-
sortable permutations.

Lemma 4.10. Given π ∈ Sn such that πi = n and i 6= 1, let σ = π[1...i−1]π[i+1...n]. If t2(σ) = idn−1 then
t2(π) = idn.

Proof. By Lemma 4.9, when t is applied to π, nothing is popped before n is pushed onto the stack, and n does
not pop anything from the stack. Then, n is immediately popped. Therefore, t(π) = nt(σ) where nt(σ) is the
permutation obtained by placing n at the beginning of t(σ). However, Proposition 4.1 means that t(σ)1 = n−1.
Thus, when applying t to nt(σ), we have that n − 1 is pushed into the stack right after n is and the stack is
21-avoiding throughout the entire sort. As a result, t(σ) is sorted as if n was not there, so

t2(π) = t(nt(σ)) = t2(σ)n = idn−1n = idn.

5. The Properties of the ({12, 21}, 1)− Machine

We prove that the machine (s ◦ t) eventually sorts all permutations through a series of supporting lemmas. We
first characterize the output of the map (s ◦ t) when π1 = 1.

Lemma 5.1. Given π ∈ Sn, if lead(π) ≥ 1, some integer 1 ≤ i ≤ n− lead(π) satisfies

(s ◦ t)(π)[i:i+lead(π)] = 12 . . . (lead(π) + 1).

Proof. From Lemma 4.2, we have that t(π) = σ(lead(π) + 1)lead(π) . . . 1 where σ is some (possibly empty)
permutation. Then, in the stack sorting process of s, when lead(π) + 1 is added to the stack, the rest of
lead(π) . . . 1 will be added to the stack immediately after; the lemma statement follows.

Next, we characterize the output of (s ◦ t) when π1 6= 1 and πn 6= 1.

Lemma 5.2. Given π ∈ Sn and integers i and j such that 2 ≤ i < i+ j − 1 ≤ n, if π[i:i+j−1] = 12 . . . j, there
exists an integer 1 ≤ ` < i such that

(s ◦ t)(π)[`:`+j−1] = 12 . . . j.

Proof. From Lemma 4.4, we have that t(π)[`:`+j−1] = 12 . . . j for some 1 ≤ ` < i. Then, in the stack sorting
process of s, all entries 1 ≤ i ≤ j − 1 are popped in order by i+ 1, respectively, until j enters the stack. If j is
not the last entry of π, then the entry immediately after will pop j into the output. If j is the last entry of π,
then j will be added to the output by definition. The lemma statement follows.

We end by showing repeated applications of T eventually increase the lead length of π.

Lemma 5.3. Given π ∈ Sn, if for some positive integer a we have that lead((s ◦ t)a(π)) < n, there exists an
integer b > a such that

lead((s ◦ t)b(π)) > lead((s ◦ t)a(π)).

Proof. Let ` = lead((s ◦ t)a(π)). By Lemma 5.1, some integer 1 ≤ i ≤ n − k satisfies (s ◦ t)a+1(π)[i:i+`] =
12 . . . (`+ 1). If i = 1 we are done. If i 6= 1, Lemma 5.2 concludes.

Now, we can prove that the ({12, 21}, 1)−machine eventually sorts all permutations.

Theorem 5.1. For every positive integer n and every permutation π ∈ Sn, there exists a nonnegative integer
j such that (s ◦ t)j(π) = idn

Proof. If πn = 1, then clearly t(π)n 6= 1 and thus (s ◦ t)(π)n 6= 1 as 1 is popped by the subsequent entry in
t(π) during the stack sorting process of s. Then, from Lemma 5.2, there exists a such that (s ◦ t)a(π)1 = 1. If
πn 6= 1, the same result follows immediately from Lemma 5.2. Then from Lemma 5.3 there exists some b > a
satisfying lead((s ◦ t)b(π)) = n. We thus have that (s ◦ t)b(π) = idn by definition.

We again conjecture on what permutations take the most number of sorts and what that number is. Let
m(s◦t)(π) be the smallest nonnegative integer j such that (s ◦ t)j(π) = id|π|.
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Conjecture 5.1. For all π ∈ Sn, the greatest value of m(s◦t)(π) is 2n− 5.

To partially resolve the conjecture by showing that there are permutations π such that m(s◦t)(π) = 2n− 5,
we first prove a supporting lemma.

Lemma 5.4. For any n ≥ 1 and some 3 ≤ i < n− 1, we have that

(s ◦ t)2(i(idn−i−1 + i)(idi−1)n) = (idn−i−1 + i)(idi−1)in.

Proof. First, t is applied. When i(idn−i−1 + i) is pushed into the stack, the stack is effectively 12−avoiding.
Next, 1 pops (idn−i−1 + i) (in reverse order), turning the stack to 21−avoiding. Then, each entry of (idi−1)
pops the entry prior to itself. Finally, n pops i− 1, and ni is popped to the output from the stack, resulting in
the output (rev(idn−i−1 + i))(idi−1ni).

Then, when s is applied, all of rev(idn−i−1 + i) is pushed into the stack. Next, (idi−1) is pushed into the
stack, with each entry of (idi−1) popping the entry prior to itself. Afterwards, n pops the entire stack, adding
(i− 1)(idn−i−1 + i) to the output. Finally, i is pushed into the stack and in is popped to the output, resulting
in (idi−1)(idn−i−1 + i)in.

When t is first applied in the next application of (s◦t), all of (idi−1)(idn−i−1+i) is pushed into the effectively
12−avoiding stack. Then, i pops all of (idn−i−1 + i) and n gets pushed into the stack. Finally, ni(rev(idi−1))
is popped and added to the output, resulting in (rev(idn−i−1 + i))ni(rev(idi−1)).

When s is applied again, all of rev(idn−i−1+i) are pushed into the stack. Then, n pops all of rev(idn−i−1+i)
out and all of i(rev(idi−1)) are pushed into the stack. Finally, all of (idi−1)in are popped to the output, resulting
in (idn−i−1 + i)(idi−1)in.

Now, we prove the existence of permutations π such that m(s◦t)(π) = 2n− 5.

Lemma 5.5. For n ≥ 3 and π ∈ Sn, if π = 2σ1n where σ ∈ Avn−3(213) then m(s◦t)(π) = 2n− 5.

Proof. When all such permutations are sorted by t, 2 enters the stack first. As all elements of σ are greater than
2, the stack is effectively 12−avoiding. Consider the first element σi ∈ σ that is popped and assume σi 6= n− 1.
If i = n− 3 then σi = n− 1, a contradiction. Otherwise, σi+1 < σi. Because σ ∈ Avn−3(213), there must be no
entries larger than σi after σi. σi would therefore pop n− 1 from the stack when it first enters, a contradiction.
Thus, n − 1 is the first entry that is popped from σ, and analogously n − k is the kth entry that is popped.
Thus, t(π) = rev(idn−3 + 2)1n2, and subsequently (s ◦ t)(π) = 1(idn−3 + 2)2n.

In the next sort of t, all of 1(idn−3 + 2) enter the stack; then, 2 entering pops out idn−3 + 2, resulting in the
output rev(idn−3 + 2)n21. In the next sort of s, all of rev(idn−3 + 2) enter the stack and n immediately pops
them out. It follows that (s◦t)2(π) = (idn−3+2)12n. Then, by Lemma 5.4, we have that t2n−8(idn−3+2)12n) =
(n− 1)idn−2n. Lastly, we have that t((n− 1)idn−2n) = idn−2n(n− 1) and s(idn−2n(n− 1)) = idn, for a total
of 2n− 5 sorts.

We also conjecture that the permutations in Lemma 5.5 are the only minimally sorted permutations with
respect to the map (s ◦ t).

Conjecture 5.2. The permutation π takes 2n − 5 sorts to be sorted to the identity by (s ◦ t) if and only if
π = 2σ1n and σ ∈ Avn−3(213).

Finally, we show that two-stack-sortable permutations under t can generate one-stack-sortable permutations
under (s ◦ t) and vice versa. First, we start with a two-stack-sortable permutation under t.

Lemma 5.6. Given π ∈ Sn+1 such that πi = n+ 1 and i 6= 1, let σ = π[1...i−1]π[i+1...n]. If t2(π) = idn+1 then
(s ◦ t)(σ) = idn.

Proof. As in Lemma 4.10, we have that t(π) = (n+ 1)t(σ). Moreover, t(π)[2:n+1] = t(σ) is 231-avoiding because
t2(π) = idn+1. Thus, from Lemma 2.1, (s ◦ t)(σ) = idn.

Next, we start with a one-stack-sortable permutation under (s ◦ t).

Lemma 5.7. Given σ ∈ Sn and 1 ≤ i ≤ n such that σ1 < σ2 < · · · < σi, let π = σ[1...i](n + 1)σ[i+1...n]. If
(s ◦ t)(σ) = idn then t2(π) = idn+1.

Proof. Since π1 < π2 < · · · < πi+1 = n + 1, we have that n + 1 is the first element popped to the output, so
t(π) = (n+ 1)t(σ). Then, because (s ◦ t)(σ) = idn, it follows that t(σ) = t(π)[2:n+1] is 231-avoiding. Therefore,
from Lemma 2.1, t2(π) = idn+1.
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