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Abstract: We extend the work of Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and Hirschhorn on the
problem of sharing pizza among several people. More specifically, we present a class of Coxeter arrangements
in an even dimension n such that if one cuts a ball containing the origin with one of these arrangements, the
slices can be partitioned into 2n/2 blocks such that each block has the same volume.
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1. Introduction

The original pizza problem was formulated by Upton as a problem in Mathematics Magazine [8]. Given a
circular disc, pick an arbitrary point in the disc. Cut the disc with four lines through this point such that
adjacent cuts have an angle of π/4 radians. When alternating the slices between two friends, they will receive
the same amount of pizza. Goldberg [5] provided the solution for 2k lines where k ≥ 2. Recently, this problem
was generalized to higher dimensions independently by Brailov [2] and Ehrenborg–Morel–Readdy [3]. Returning
to two dimensions Hirschhorn, Hirschhorn, Hirschhorn, Hirschhorn and Hirschhorn showed that if you cut the
pizza with the dihedral arrangement with 2p lines, p people can share the pizza fairly [6]. In four dimensions
Ehrenborg–Morel–Readdy showed that 4 people can share a 4-dimensional ball fairly if they use a Coxeter
arrangement of type F4; see [3, Section 9]. Other than this result, the problem of sharing pizza among more
than two people in dimensions greater than two has remained open.

In this paper, we show that for n even, there is a class of Coxeter arrangements in n dimensions such that
2n/2 people can fairly share a pizza. Our technique is to use one of the pizza results of Ehrenborg–Morel–Readdy
(see Theorem 2.2) to a class of subarrangements of our arrangement. This yields a linear equation system in
the sought-after quantities. The coefficient matrix of this system is a classical Hadamard matrix, and hence it
is straightforward to see that all the quantities have the same value, proving the result.

We end this note with open questions.

2. Preliminaries

Let V be a finite-dimensional real inner product space. Let H be a central hyperplane arrangement in the
space V . The connected components of the complement V −

⋃
H∈HH are called chambers. Select one chamber T0

to be the base chamber. Every chamber has a sign (−1)T given by (−1)r where r is the number hyperplanes
of H that separates the chamber T from the base chamber T0. For measurable set K the pizza quantity is
defined to be the alternating sum

P (H,K) =
∑

(−1)T ·Vol(K ∩ T )



C. Ehrenborg, D. Ehrenborg, M. Ehrenborg, and R. Ehrenborg

where T ranges over all chambers of the arrangement H.
A Coxeter arrangements H is a hyperplane arrangement such that the group W generated by the orthogonal

reflections in the hyperplanes of H is finite and the arrangement is closed under all such reflections. Given two
hyperplane arrangements H1 and H2 in the spaces V1, respectively, V2, the product arrangement H1 × H2 in
the Cartesian product V1 × V2 is described by

H1 ×H2 = {H × V2 : H ∈ H1} ∪ {V1 ×H : H ∈ H2}.

Note that Coxeter arrangements are closed under this product. A Coxeter arrangement that cannot factor
under this product is called irreducible. It is well-known that the irreducible Coxeter arrangements have been
classified; see for instance [1].

The only irreducible arrangement needed for this note is the dihedral arrangement. It is the arrangement in
the plane R2 consisting of k lines through the origin, where adjacent lines meet at an angle of π/k radians. In
the Coxeter classification, the dihedral arrangement has type I2(k).

Let B(a,R) denote the ball centered at the point a of radius R. Goldberg’s result [5] can now be stated as:

Theorem 2.1 (Goldberg). Let H be the dihedral arrangement I2(2k) in R2 for k ≥ 2. For every point a ∈ R2

such that 0 ∈ B(a,R), the pizza quantity for the disc B(a,R) vanishes, that is, P (H,B(a,R)) = 0.

Ehrenborg–Morel–Readdy generalized this result to the following statement in higher dimensions [3, Theo-
rem 1.1(i)].

Theorem 2.2 (Ehrenborg–Morel–Readdy). Let H be a Coxeter arrangement in a finite-dimensional inner
product space V of dimension n. Assume that the number of hyperplanes of H is strictly greater than the
dimension n and has the same parity as n. If the ball B(a,R) contains the origin then the pizza quantity
P (H,B(a,R)) vanishes, that is, P (H,B(a,R)) = 0.

3. The construction

Let Vj be an inner product space of dimension nj for 1 ≤ j ≤ k and let Hj be a Coxeter arrangement in Vj . The
product arrangement H = H1×H2×· · ·×Hk is the arrangement in the Cartesian product V = V1×V2×· · ·×Vk
consisting of the hyperplanes

H = {V1 × · · · × Vj−1 ×H × Vj+1 × · · · × Vk : H ∈ Hj}.

For a vector ~ı = (i1, i2, . . . , ik) ∈ {0, 1}k define the subarrangement H(~ı) of H to be the collection of the
hyperplanes

H(~ı) = {V1 × · · · × Vj−1 ×H × Vj+1 × · · · × Vk : ij = 1, H ∈ Hj},

that is, for the zero index vector ~0 = (0, 0, . . . , 0) the subarrangement H(~0) is the empty arrangement. For
the index vector (1, 1, . . . , 1), the subarrangement H((1, 1, . . . , 1)) is the product arrangement H. The arrange-
ment H(~ı) is also a product arrangement, that is, it factors as follows:

H(~ı) = F1 ×F2 × · · · × Fk,

where Fj is the arrangement Hj if ij = 1 and is the empty arrangement on Vj if ij = 0. Since each factor is a
Coxeter arrangement, we conclude that H(~ı) is a Coxeter arrangement.

Let T0 be a base chamber for the product arrangement H1 × H2 × · · · × Hk. For each chamber T of the
product arrangement H define the vector ~r(T ) = (r1, r2, . . . , rk) ∈ {0, 1}k by letting rj be the parity of the
number hyperplanes inherited from Hj that separate the chamber T from the base chamber T0.

Let T0(~ı) be the chamber of the arrangement H(~ı) that contains the chamber T0. We view T0(~ı) as the base
chamber of H(~ı). Let T be a chamber of the product arrangement H. The chamber T is contained in a unique
chamber T ′ of the subarrangement H(~ı). We claim that the sign of the chamber T ′ is given by (−1)~ı·~r(T ) where
~ı · ~r(T ) denotes the inner product of the two vectors ~ı and ~r(T ). The reason is that we only count hyperplanes
whose index j satisfies ij = 1.

We can now state our main result.

Theorem 3.1. Assume that for each index i the dimension ni of Vi is even. Furthermore, assume that the
number of hyperplanes of the arrangement Hi is even and is strictly greater than the sum n = n1 +n2 + · · ·+nk.
Let B(a,R) be a ball that contains the origin. Then for all index vectors ~ ∈ {0, 1}k the following equality holds:

Vol(B(a,R))

2k
=

∑
T :~r(T )=~

Vol(T ∩ B(a,R)). (1)
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Proof. For ~ ∈ {0, 1}k let x~ be the sum on the right-hand side of equation (1). Directly, we have the equality

Vol(B(a,R)) =
∑

~ ∈{0,1}k
x~. (2)

Let ~ı be a non-zero index vector in {0, 1}k. The subarrangement H(~ı) has more hyperplanes than the dimen-
sion n. Furthermore, the number of hyperplanes is even, that is, the same parity as the dimension n. Hence
Theorem 2.2 applies and we have

0 =
∑
T

(−1)~ı·~r(T ) ·Vol(T ∩ B(a,R)) =
∑

~ ∈{0,1}k

∑
T :~r(T )=~

(−1)~ı·~ ·Vol(T ∩ B(a,R)) =
∑

~ ∈{0,1}k
(−1)~ı·~ · x~. (3)

Observe that equations (2) and (3) form a linear equation system in the unknown variables x~. The coefficient
matrix has rows and columns indexed by the set {0, 1}k and is given by

M =
(
(−1)~ı·~

)
~ı,~ ∈{0,1}k .

This is a Hadamard matrix, in fact, first considered by Sylvester [7]. Hence, the matrix M is non-singular
and the linear system has a unique solution. It is now straightforward to verify that the solution is given by
x~ = Vol(B(a,R))/2k for all index vectors ~.

Using the dihedral arrangement, we obtain the following result.

Corollary 3.1. For even dimension n, the Coxeter arrangement of the product type

I2(k1)× I2(k2)× · · · × I2(kn/2), (4)

where k1, k2, . . . , kn/2 are all even and greater than or equal to n + 2, allows one to share pizza fairly between

2n/2 people.

Note that the number of hyperplanes in the arrangement in equation (4) is k1+k2+ · · ·+kn/2 ≥ n/2 ·(n+2).
The smallest such arrangement is the following.

Corollary 3.2. For even dimension n, the Coxeter arrangement of type I2(n + 2)n/2 allows us to share pizza
fairly between 2n/2 people.

It might be a bit impractical since we would have a total number of (2n+4)n/2 slices and each person receives
(n+ 2)n/2 slices. Also note that for n = 4 our construction uses 12 hyperplanes whereas, the Ehrenborg–Morel–
Readdy construction [3, Section 9] based on the Coxeter arrangement of type F4 uses 24 hyperplanes.

4. Open questions

To our knowledge, it is still an open question on how to share pizza in odd dimensions among several people.
Are there ways to share a pizza among not a two power number of people? Finally, is there a dissection proof
of Theorem 3.1 in the spirit of the results in [4]?
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