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Abstract: It is well known that descents and excedances are equidistributed in the symmetric group. We show
that the descent and excedance enumerators, summed over permutations with a fixed first letter, are identical
when we perform a simple change of the first letter. We generalize this to type B and colored permutation
groups. We find q-analogues of generating functions for descent enumerating polynomials with respect to the
major index when summed over permutations that start with a fixed first letter. Using the flag major index, we
also generalise to obtain type B results. In the univariate case, we show that the aforementioned polynomials are
real-rooted but need not be palindromic. Finally, we show that a symmetrised descent enumerating polynomial
over the hyperoctahedral group with fixed first letter is palindromic and gamma-positive.
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1. Introduction

For a positive integer n, let [n] = {1, 2, . . . , n} and let Sn denote the set of permutations of the set [n]. For
π ∈ Sn with π = π1, π2, . . . , πn, let DES(π) = {i ∈ [n − 1] : πi > πi+1} be its set of descents and let
des(π) = |DES(π)| denote its number of descents. For π ∈ Sn let EXC(π) = {i ∈ [n] : πi > i} be its set of
excedances and let exc(π) = |EXC(π)| denote its number of excedances. The polynomial An(t) =

∑
π∈Sn

tdes(π)

is defined as the n-th Eulerian polynomial and is well studied, see, for example, the book [13] by Petersen. If
we define AExcn(t) =

∑
π∈Sn

texc(π), then, for all non-negative integers n, it is well known (see [13]) that
An(t) = AExcn(t).

For a positive integer n and for i ∈ [n], let Sn,i = {π ∈ Sn : π1 = i} be the subset of Sn consisting of all π
that start with the letter i. While working on riffle shuffles in decks with repeated cards, Conger [6] enumerated
descents over the set Sn,i. Let An,d,i denote the number of permutations in Sn,i that have d descents. Define

An,i(t) :=
∑

π∈Sn,i

tdes(π) =

n−1∑
d=0

An,d,it
d. (1)

The following identity and generating function were shown by Conger [6, Theorem 1 and Equation 25].

Theorem 1.1 (Conger). With the above notation, when 1 ≤ i ≤ n, we have

An,d,i =
∑
j≥0

(−1)d−j
(

n

d− j

)
ji−1(j + 1)n−i,

An,i(t)

(1− t)n
=

∑
j≥1

ji−1(j + 1)n−itj .
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Various q-analogues of identities for descent polynomials over Coxeter groups are known, see, for example,
Pan and Zeng [14] and Dey, Shankar, and Sivasubramanian [8]. In this work, we obtain the following q-analogue
of Theorem 1.1. Let maj(π) :=

∑
i∈DES(π) i. Define

An,i(t, q) :=
∑

π∈Sn,i

tdes(π)qmaj(π) and An,d,i(q) =
∑

π∈Sn,i:des(π)=d

qmaj(π).

Our result is the following.

Theorem 1.2. Let An,i(t, q) be defined as above. When 1 ≤ i ≤ n, we have

An,d,i(q) =
∑
j≥0

(−1)d−j
(

n

d− j

)
q

q(
d−j+1

2 )+j [j]i−1q [j + 1]n−iq ,

An,i(t, q)

(tq; q)n
=

∑
j≥0

qj [j]i−1q [j + 1]n−iq tj .

It is easy to see that Theorem 1.2 clearly generalizes Theorem 1.1. As can be expected, type B analogues of
this result exist. Recall that Bn is the group of signed permutations over [±n]. We give a Carlitz-type identity
for the polynomials Bn,i(t). The type B descent set is defined as follows DESB(π) := {i ∈ [0, n− 1]|πi > πi+1}
where π0 := 0. The type B descent of a permutation is defined as desB(π) := |DESB(π)|. For a signed
permutation, define the DESA(π) = {r ∈ [n − 1] : πr > πr+1} and desA(π) = |DESA(π)|. The type A major
index is defined by majA(π) =

∑
r∈DESA(π) r. To obtain the result that generalises these results known over

Bn, we use the fmajor index statistic introduced by Adin and Roichman in [1]. Also, see the paper by Gessel
and Chow [4]. For π ∈ Bn, define its flag major index (fmaj, henceforth) as fmaj(π) = 2majA(π)+N(π), where
N(π) is the number of negative entries in π. Define

Bn,i(t, q) :=
∑

π∈Bn,i

tdesB(π)qfmaj(π) and Bn,d,i(q) =
∑

π∈Bn,i:desB(π)=d

qfmaj(π). (2)

Our result refines the Carlitz-type identity of Brenti [3, Theorem 3.4(iii)] for the type B Coxeter group and
depends on the sign of the first letter. Our result is proved in Section 5 and is the following.

Theorem 1.3. Let Bn,i(t, q) be defined as in (2).

1. We have the following identities. When i > 0,

Bn,d,i(q) =

n−1∑
j=0

(−1)d−j
(

n

d− j

)
q2
q2(

d−j+1
2 )+2j [2j]i−1q [2j + 1]n−iq .

When i < 0,

Bn,d,i(q) =

n−1∑
j=0

(−1)d−j
(

n

d− j

)
q2
q2(

d−j+1
2 )+2j−1[2j]i−1q [2j − 1]n−iq .

2. We have the following generating function for these polynomials. For 0 < i ≤ n,

Bn,i(t, q)

(tq2; q2)n
=
∑
j≥0

q2j [2j]i−1[2j + 1]n−itj .

For 0 < i ≤ n,
Bn,i(t, q)

(tq2; q2)n
=
∑
j≥0

q2j−1[2j]i−1[2j − 1]n−itj .

Using the identity [2j]n − [2j − 1]n = ([2j] − [2j − 1])
∑
r≥0

[2j]r[2j − 1]n−r and summing over all i, i gives

us Brenti’s result [3, Theorem 3.4(iii)]. A Carlitz identity for the wreath product Sn o Zr was given by Chow
and Mansour [5]. It would be interesting to see if their identity can be refined along these lines by fixing the
first letter and the color. As mentioned earlier, it is well known that An(t) = AExcn(t). We ask if a similar
result holds when we consider the set Sn,i. Towards answering this, for a positive integer n and for 1 ≤ j ≤ n,
recall An,i(t) from (1) and define AExcn,i(t) =

∑
π∈Sn,i

texc(π) to be the polynomials enumerating descents and

excedances respectively in Sn,i. When n = 6, we get the following table giving A6,i(t) and AExc6,i(t) (seen
better on a colour monitor).

ECA 5:3 (2025) Article #S2R24 2



Hiranya Kishore Dey, Umesh Shankar, and Sivaramakrishnan Sivasubramanian

i A6,i(t) wrt descents AExc6,i(t) wrt excedances
1 1 + 26t+ 66t2 + 26t3 + t4 1 + 26t+ 66t2 + 26t3 + t4

2 16t+ 66t2 + 36t3 + 2t4 t+ 26t2 + 66t3 + 26t4 + t5

3 8t+ 60t2 + 48t3 + 4t4 2t+ 36t2 + 66t3 + 16t4

4 4t+ 48t2 + 60t3 + 8t4 4t+ 48t2 + 60t3 + 8t4

5 2t+ 36t2 + 66t3 + 16t4 8t+ 60t2 + 48t3 + 4t4

6 t+ 26t2 + 66t3 + 26t4 + t5 16t+ 66t2 + 36t3 + 2t4

Our main result is Theorem 1.4 (proved in Section 3), which holds for colored permutation groups. As a
corollary, when the number of colors is 1, we get the following.

Corollary 1.1. When n ≥ 2, we have An,1(t) = AExcn,1(t) = An−1(t). When n ≥ 2 and 2 ≤ i ≤ n, we have
An,i(t) = AExcn,n+2−i(t). Thus, for a fixed n, the two families of polynomials An,i(t) and AExcn,i(t) are the
same up to a permutation of the second index i in the subscript.

For the proof of Theorem 1.4, we need a modification of Foata’s first fundamental transformation. To the
best of our knowledge, we have not seen this modified version, see Remark 3.1 for the exact relation. Another
application of Foata’s first fundamental transformation mapping descents of a special kind to pure excedances
in Sn was recently given by Baril and Kirgizov in [2]. They defined pure excedance of π ∈ Sn to be the number
of positions i such that i < πi and there is no j < i with i ≤ πj < πi.

For a positive integer r, let [r]0 = {0, 1, . . . , r − 1} be a set of size r. The colored permutation groups are
denoted by Sn o Zr (see, for example Steingŕımsson [15]). To define descents and excedances over Sn o Zr, we
need a linear order L on [n] × [r]0. With respect to such a linear order L, for a permutation π, we denote
descents as ldes(π) and excedances as lexc(π) (see Section 2 for our definition). We denote Sn oZr alternatively
as Sr

n and call this the colored permutation group.
In Section 2, we define the min-one linear order on elements of colored permutations. It will be clear when

there is a single color that the min-one order reduces to the natural order on N and that ldes and lexc with
respect to these orders give the usual definition of des and exc in Sn respectively. Let S(i,j) be the set of colored
permutations in Sr

n that start with the letter i that further have colour j for the letter i. With respect to the
min-one order, we show that enumerating ldes over S(i,j) gives the same polynomial as enumerating lexc over
S(σ(i),µ(j)) for some permutations σ and µ. Our result proved in Section 3 is the following.

Theorem 1.4. With respect to the min-one order, for all positive integers n, r, there exists a bijection Γ : Sr
n →

Sr
n such that ldes(p) = lexc(Γ(p)) for all p ∈ Sr

n which additionally satisfies Γ(S(i,j)) = S(n+2−i,r+1−j), when
i ≥ 2 and j ∈ [n]. When i = 1 and j ∈ [n], we have Γ(S(1,j)) = S(1,r+1−j).

With respect to the min-one order, for positive integers n, r, the polynomials enumerating ldes in Sr
n have

degree n − 1. Recall that Bn is the group of signed permutations over [±n] and enumeration of the type B
descent, desB , over Bn gives a degree n polynomial. Thus, if we use the min-one order and have two colors, we
will not get a generalization of known results for Bn.

Thus, to obtain a generalisation over Bn, we consider colored permutations with an even number of colors
and append a zero to the front of all such permutations. We denote this as S2r

n . The element zero is also given
a place in the linear order. We thus define our second linear order called the symmetric order with respect to
which, enumeration of ldes gives a degree n polynomial for all n, r. Further, this linear order gives the standard
linear order on Z when we have two colors, and further, in this case, ldes reduces to desB .

We define a statistic bexc that generalises Brenti’s type B excedance statistic to colored permutations with
an even number of colors. Our second main result, proved in Section 6, is the following.

Theorem 1.5. With respect to the symmetric order, for even colored permutation groups S2r
n , we have a

bijection Γ : S2r
n 7→ S2r

n satisfying ldes(p) = bexc(Γ(p)). Further, our bijection Γ satisfies Γ(S(i,j)) = S(i,j) and

Γ(S(i,j)) = S(i,j) when 1 ≤ i ≤ n and 1 ≤ j ≤ r.

Define the restricted type B Eulerian numbers that count descents and excedances when the starting letter
and its colour are fixed. Let Bn,i := {π ∈ Bn : π1 = i}. When i ∈ [−n, n]\{0}, define the polynomials

Bn,i(t) :=
∑

π∈Bn,i

tdesB(π), BEn,i(t) :=
∑

π∈Bn,i

texcB(π).

When d = 2, we obtain the following corollary.

Corollary 1.2. For positive integers n, k with 1 ≤ i ≤ n, the following are equidistributed.

1. When i = 1, we have Bn,i(t) = BEn,i(t) and Bn,i(t) = BEn,I(t).

2. When 2 ≤ i ≤ n, we have Bn,i(t) = BEn,i(t) and Bn,i(t) = BEn,i(t).
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A degree n polynomial f(t) =
∑n
r=0 frt

r with fn 6= 0 is said to be palindromic if fr = fn−r when 0 ≤
r ≤ n. A degree n palindromic polynomial f(t) is said to be gamma positive if it can be written as f(t) =∑bn/2c
r=0 γrt

r(1 + t)n−2r with γr ≥ 0 for all r. Nevo, Petersen and Tenner [11] showed gamma positivity of the
polynomial An,i(t) +An,n+1−i(t).

Theorem 1.6 (Nevo, Petersen and Tenner). For a positive integer n and for 1 ≤ i ≤ n, the sum An,i(t) +
An,n+1−i(t) is palindromic and gamma positive.

In Subsection 6.2, we show the following type B analogue of Theorem 1.6. For 1 ≤ i ≤ n, define the restricted
and symmetrized type B Eulerian polynomials, as

Bn,i(t) = Bn,i(t) +Bn,i(t) and B̃n,i(t) = tBn,i(t) +Bn,i(t).

Theorem 1.7. For 1 ≤ i ≤ n, both Bn,i(t) and B̃n,i(t) are gamma-positive with the centers of symmetry n/2
and (n+ 1)/2 respectively.

A polynomial is said to be real-rooted if all its roots are real. Dey [7] showed that the polynomials An,i(t)
are real-rooted when n ≥ 2 and 1 ≤ i ≤ n. Our next result (proved in Section 6) is a type B analogue of this
result.

Theorem 1.8. For positive integers n, i with 1 ≤ i ≤ n, the polynomials Bn,i(t) and Bn,i(t) are real-rooted.

2. Preliminaries

A colored permutation is an element of the group Sr
n = Zr o Sn. We represent a colored permutation as a

product π × c of a permutation word π = π1π2 . . . πn ∈ Sn and an n-tuple c = (c1, . . . , cn) with each ci ∈ Zr.
We also think of an element of π × c ∈ Sr

n, where π = π1 . . . πn ∈ Sn and c = (c1, . . . , cn) with ci ∈ Zr, as
an n-tuple of pairs ((π1, c1), . . . , (πn, cn)). We will also somet replace the pair (πi, ci) by the letter πi with the
subscript ci. This will let us write the element π × c as (π1)c1 . . . (πn)cn .

Given a linear ordering >L on the elements of the set [n]× [r]0, we will define three statistics on the set of
colored permutations Sr

n using this linear order.

Definition 2.1. The L-descent set of a colored permutation p = π × c with respect to the linear ordering >L
is the set, DescSetL(p) := {i ∈ [n− 1] : (πi, ci) >L (πi+1, ci+1)}. The cardinality of DescSetL(p) is denoted by
ldes(p).

Definition 2.2. The L-ascent set of a colored permutation p = π × c with respect to the linear ordering >L
is the set, AscSetL(p) := {i ∈ [n − 1] : (πi+1, ci+1) >L (πi, ci)}. The cardinality of AscSetL(p) is denoted by
lasc(p).

For a coloured word w = w1 . . . wn, define its reverse word as REV(w) = wn . . . w1. We note that both the
value along with its color are reversed by this operation. It is clear that REV : Sr

n 7→ Sr
n is a bijection. Also,

it is easy to check that lasc(p) = ldes(REV(p)).

Definition 2.3. The L-excedance set of a colored permutation p = π× c with respect to the linear ordering >L
is the set, ExcSetL(p) := {i ∈ [n] : (ππi

, cπi
) >L (πi, ci)}. The cardinality of ExcSetL(p) is denoted by lexc(p).

Example 2.1. Let p = (241563, 013302) ∈ S4
6. Since r = 4, the order L is:

10 <L · · · <L 60 <L 11 <L · · · <L 61 <L 12 <L · · · <L 62 <L 13 <L · · · <L 63.

Here, 53 >L 60 and therefore, ldes(p) = 1. Further, 41 >L 20, 53 >L 41, 32 >L 60, 13 >L 32 and so, lexc(p) = 4.

The colored permutation p = (π, c) written in word notation is the word (π1, c1) . . . (πn, cn) or (π1)ci . . . (πn)ci
in the alphabet [n] × [r]0. We introduce our cycle notation for colored permutations as follows. Let p = (π, c)
and π = Cyc1 . . .Cyck be the cycle decomposition of π. The cycle decomposition of p is obtained by replacing
the each element πi in the cycle decomposition of π by the pair (πi, ci) or (πi)ci . This will be called the cycle
decomposition of the colored permutation.

Example 2.2. Let p = (3241, 0110) ∈ S2
4. The cycle decomposition of p is (10, 31, 40)(21) which we think is

better notation than the equivalent ((1, 0), (3, 1), (4, 0))((2, 1)).

We will look at the following linear ordering on [n]× [r]0, which will give us the standard linear order on N
when we set r = 1.
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Definition 2.4. The min-one order >mo on [n]× [r]0 is defined to be

10 <mo 11 <mo · · · <mo 1r−1 <mo 20 <mo 30 <mo · · · <mo n0

n0 <mo 21 <mo · · · <mo n1 <mo · · · <mo 2r−1 <mo · · · <mo nr−1

Furthermore, for the order, when d = 1, the statistics ldes(π), des(π), exc(π) and lexc(π) coincide. For
(i, j) ∈ [n]× [r]0, let S(i,j) be set of all colored permutations π × c ∈ Sr

n with π1 = i and c1 = j.

3. Proof of Theorem 1.4

We move to proving one of the main results of this work. Before we see our proof, we need a definition. Define
a map s : [n]× [r]0 7→ [n]× [r]0 that takes s(i, j) = (n+ 2− i, r+ 1− j) if i 6= 1 and when i = 1, for all j ∈ [r]0,
define s(1, j) = (1, r + 1− j). It is easy to see that the map s is a bijection.

Proof of Theorem 1.4. In cycle notation, let p = (π, c) ∈ Sr
n. Let p = Cyc1 . . .Cyck be the cycle decomposition

of p. First, replace each pair (i, j) by the pair s(i, j). Within cycles, we order the cycles of p such that the
last element of each cycle is the smallest pair (πi, ci) in the linear order L in that cycle. Further, we order the
cycles such that the last elements are ascending in the order L. Finally, we remove the parentheses. The colored
permutation obtained is the required permutation. Whenever there is an i such that neither πi nor ππi is 1 and

(ππi
, cπi

) >mo (πi, ci),

then we necessarily have

(n+ 2− ππi
, n+ 1− cπi

) <mo (n+ 2− πi, n+ 1− ci).

For these indices, an L-excedance gets turned into an L-descent. If πi = 1, then

(π1, c1) >mo (1, ci)

is always true. Here, (1, ci) is the last element in the first cycle and (π1, c1) is the first element of that cycle
according to our arrangement. This does not generate an L-descent under our bijection. However, we have the
inequality

(π−1(1), cπ−1(1)) >mo (1, ci)

Under our bijection, this produces an L-descent as (n+2−π−1(1), n+1−cπ−1(1)) >mo (1, n+1−ci). Therefore,
every L-excedance of p is taken to an L-descent of Γ(p), which was to be shown. What is left to be shown is
that there are no L-descents occurring between cycles when parentheses are being removed. This is taken care
of by the fact that the last element in the cycle is always smaller in the ‘mo’ order than the first element of the
succeeding cycle, by our arrangement of the cycles.

Example 3.1. An illuminating example is when the number of colors is one and the order is just the order of
Z. Take a permutation written in one-line notation, say π = 891624375 with exc(π) = 3. Replace i by n+ 2− i
for i 6= 1. We get π′ = 321597846. Write this in cycle form as specified, that is, π′ = (31)(2)(596784). Remove
the parenthesis to get Φ(π) = 312596784 which has des(Φ(π)) = 3.

We prove Corollary 1.1.

Proof of Corollary 1.1. When r = 1, for all π ∈ Sn, we clearly have ldes(π) = des(π) and lexc(π) = exc(π).

Remark 3.1. When r = 1, the bijection Γ is σ ◦FFT′ ◦σ where σ =
∏
k 6=1

(k, n+ 2− k) and FFT′ is a variant of

Foata’s fundamental transformation with the cycles arranged slightly differently as given in Lothaire [10, Theorem
10.2.3].

4. Proof of Theorem 1.2

The main aim of this section is to supply a proof of Theorem 1.2.

Proposition 4.1. For 1 ≤ i ≤ n, the polynomials An,d,i(q) satisfy the following recurrence relation:

An+1,d,i(q) = qd+1[n− d]qAn,d−1,i(q) + [d+ 1]qAn,d,i(q).

For k = n+ 1,
An+1,d,n+1(q) = qdAn,d−1(q).

Initial conditions are A2,0,1(q) = 1, A2,1,1(q) = 0, A2,1,1(q) = 0 and A2,1,2(q) = q.

ECA 5:3 (2025) Article #S2R24 5
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Proof. We prove the recurrence using the insertion process. We insert the element n+ 1 into two different sets
of permutations to get the permutations we require.

1. We insert n+ 1 into a descent position or at the end of a permutation of Sn,i with d descents.

2. We insert n+ 1 into an ascent position of a permutation of Sn,i with d− 1 descents.

The descent change is straightforward. In the first case, there is no change in descents. In the second case,
the number of descents increases by one. Now, we keep track of how the major index changes in the insertion
process. Let {i1 < i2 < · · · < id} be the descent indices. In the first case, inserting in the position il moves
each subsequent descent position by 1, thereby increasing the major index by d− l. Therefore, the total change
is (1 + q + · · ·+ qd)An,d,i(q) = [d+ 1]qAn,d,i(q).

In the second case, indices that are ascents are precisely [n]\{i1, . . . , id−1}. Note that inserting in a position
il < y < il+1 increases the major index by y+1+d− 1− l = y+d− l. Let σ be the permutation. The insertion
process gives us

qmaj(σ)(

d−1∑
l=0

il+1−1∑
y=il+1

qy+d−l) = qmaj(σ)(qd+1 + · · ·+ qn)

where i0 = 0, id = n. A straightforward calculation shows that when summing over all permutations, this is
(qd+1 + · · · + qn)An,d−1,i(q) = qd+1[n − d]qAn,d−1,i(q). The i = n + 1 case is straightforward, and its proof is
omitted. This completes our proof.

We need the following lemma on q-binomial coefficients.

Lemma 4.1. For r + 1 ≤ d ≤ n, we have

q(
d−r+1

2 )+r[r + 1]q

(
n+ 1

d− r

)
q

= q(
d−r+1

2 )+r[d+ 1]q

(
n

d− r

)
q

− q(
d−r
2 )+r+d+1[n− d]q

(
n

d− 1− r

)
q

Proof. Cancelling the terms q(
d−r+1

2 )+r from both sides simplifies it to

[r + 1]q

(
n+ 1

d− r

)
q

= [d+ 1]q

(
n

d− r

)
q

− qr+1[n− d]q

(
n

d− 1− r

)
q

Using the q-Pascal recurrence simplifies the lemma to

qd−r[r + 1]q

(
n

d− r

)
q

+ [r + 1]q

(
n

d− 1− r

)
q

= [d+ 1]q

(
n

d− r

)
q

− qr+1[n− d]q

(
n

d− 1− r

)
q

Moving terms appropriately simplifies the lemma to

([r + 1]q + qr+1[n− d]q)

(
n

d− 1− r

)
q

= ([d+ 1]q − qd−r[r + 1]q)

(
n

d− r

)
q

,

which can further be simplified to

[n− d+ r + 1]q

(
n

d− 1− r

)
q

= [d− r]q
(

n

d− r

)
q

.

This follows by using the definition of the Gaussian binomial coefficients.

Proof of Theorem 1.2. We show that the generating function is equivalent to the following identity:

An,i(t, q)

(tq; q)n
=

∑
j≥0

qj [j]i−1q [j + 1]n−iq tj ,

=

( n∑
r=0

(−1)r
(
n

r

)
q

trq(
r+1
2 )
)
×
(∑
j≥0

qj [j]i−1q [j + 1]n−iq tj
)
,

=
∑
d≥0

(∑
r≥0

(−1)d−r
(

n

d− r

)
q

q(
d−r+1

2 )+r[r]i−1q [r + 1]n−iq

)
td.

The second equality follows from the q-binomial theorem. Define

A′n,d,i(q) :=
∑
r≥0

(−1)d−r
(

n

d− r

)
q

q(
d−r+1

2 )+r[r]i−1q [r + 1]n−iq .

We will verify that A′n,d,i(q) satisfies the recurrence in Proposition (4.1). Using Lemma 4.1 completes the proof.
The initial conditions when n = 2 are easy to verify.
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5. Proof of Theorem 1.3

Proposition 5.1. For 0 < i ≤ n, the polynomials Bn,d,i(q) satisfy the following recurrence relation:

Bn+1,d,i(q) = [2d+ 1]qBn,d,i(q) + q2d+1[2(n− d) + 1]qBn,d−1,i(q).

For i = n+ 1,
Bn+1,d,n+1 = q2dBn,d−1(q).

The initial conditions are B1,0,1(q) = 1, B1,1,1(q) = 0.
For 0 < i ≤ n, the polynomials Bn,d,i(q) satisfy the following recurrence relation:

Bn+1,d,i(q) = [2d− 1]qBn,d,i(q) + q2d−1[2(n− d+ 1) + 1]qBn,d−1,i(q).

For i = n+ 1,
Bn+1,d,n+1 = q2d−1Bn,d(q).

The initial conditions are B1,0,1(q) = 0, B1,1,1(q) = q.

Proof. The process is carried out using the insertion technique. We insert n+ 1, n+ 1 into two different sets of
permutations to get the permutations we require.

1. We insert n+ 1, n+ 1 into a descent position or n+ 1 at the end of a permutation of Bn,i with d descents.

2. We insert n + 1, n+ 1 into an ascent position or n+ 1 at the end of a permutation in Bn,i with d − 1
descents.

In the first case, there is no change in the number of descents. In the second case, the number of descents goes
up by one. Now, we keep track of the fmajor index increase in the insertion process. Let {i1 < · · · < id} be the
descent indices. In the first case, inserting n+1, n+ 1 in the position il moves each subsequent descent position
by 1, thereby increasing the fmajor index by 2(d − l). The placement of n+ 1 keeps the descent positions
i1, . . . , il intact, adding 1 to the number of negatives, but n + 1 insertion moves il to il + 1, adding 2 to the
fmajor. Finally, adding n+ 1 at the end doesn’t change the fmajor index.

In the second case, we insert in all indices that are ascents. Note that inserting in a position that is between
il < y < il+1 increases the fmajor index by 2(y + d − l) for n + 1 and 2(y + d − l − 1) + 1 for n+ 1. If the
starting letter was negative, then inserting in a position that is between il < y < il+1 increases the fmajor index
by 2(y + d− 1− l) for n+ 1 and 2(y + d− 2− l) + 1 for n+ 1. The calculation for the sum contribution of all
such insertions is straightforward and is omitted. This concludes the proof.

Proof of Theorem 1.3. The generating function is equivalent to the identity as follows.

Bn,i(t, q) =

( n∑
r=0

(−1)r
(
n

r

)
q2
trq2(

r+1
2 )
)
×
(∑
j≥0

q2j [2j]i−1q [2j + 1]n−iq tj
)

=
∑
d≥0

( n−1∑
r=0

(−1)d−r
(

n

d− r

)
q2
q2(

d−r+1
2 )+2r[2r]i−1q [2r + 1]n−iq

)
td

Define

B′n,d,i(q) :=

n−1∑
d=0

(−1)d−r
(

n

d− r

)
q2
q2(

d−r+1
2 )+2r[2r]i−1q [2r + 1]n−iq .

We will show that B′n,d,i(q) satisfies the recurrence in Proposition 5.1, thereby proving our theorem. Showing
that B′n,d,i(q) satisfies the recurrence in Proposition 5.1 is equivalent to the following claim.

Claim 1. We have

[2r + 1]q

(
n+ 1

d− r

)
q2

= [2d+ 1]q

(
n

d− r

)
q2
− q2r+1[2(n− d) + 1]q

(
n

d− 1− r

)
q2
.

The proof of the claim is very similar to the type A case and is omitted.
The second part of the theorem follows from setting

B′′n,d,i(q) :=

n−1∑
r=0

(−1)d−r
(

n

d− r

)
q2
q2(

d−r+1
2 )+2r−1[2r]i−1q [2r − 1]n−iq .

and showing that B′′n,d,i(q) satisfies the second recurrence in Proposition 5.1. The initial condition verification
is straightforward and omitted. This finishes our proof.
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6. Colored permutations with an even number of colors

An important point to note is that the maximum number of type B descents for a signed permutation in the
hyperoctahedral group is n as opposed to n − 1 for elements of the symmetric group. This additional descent
is caused by the introduction of the element π0 = 0. However, in the group S2

n, the maximum number of ldes
or lexc is n− 1.

Definition 6.1. Define I := [−r, r]\{0}. Define the set Sr
n to be the set of colored permutations in Sr

n with
the pair (0, 0) or 00 (which we will write as just 0), prefixed to each colored permutation.

We introduce a linear order on the set {(0, 0)}∪ [n]×I. We define a linear order that generalises the standard
linear order of Z when we have d = 2.

Definition 6.2. The symmetric order >S is the linear order on {(0, 0)} ∪ [n]× I defined as follows:

nr <S · · · <S n1 <S (n− 1)r <S · · · <S (n− 1)1 <S · · · <S 1r <S · · · <S 11 <S 0

0 <S 11 <S · · · <S 1r <S 21 <S · · · <S 2r <S · · · <S n1 <S · · · <S nr

The L-descent and L-ascent of a colored permutation in Sr
n are defined in the same way as for Sr

n. We
define a new statistic on the set S2r

n .

Definition 6.3. A B-excedance of a colored permutation p = (π, c) ∈ S2r
n , denoted by bexc(p), is the cardinality

of the set {i ∈ [n] : (ππi
, cπ) >S (πi, ci)} ∪ {i ∈ [n] : πi = i and ci < 0}.

Define a map t : [n] × I 7→ [n] × I that sends (i, j) to (i, j) with the convention that j = j. With this, we
are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Each colored permutation p in S2r
n has the form 0, p′ where p′ ∈ S2r

n . Consider the cycle
decomposition of p′. For every pair in the colored permutation such that πi 6= i, change the pair (i, j) to the
pair t(i, j). Arrange the pairs in each cycle such that the last pair has the smallest first component in that cycle.
Arrange the cycles such that the first component of the last elements is increasing. Remove the parentheses to
get a colored permutation in word form. This is a bijection Γ as all the steps are clearly reversible. We claim
that this is the required colored permutation by arguing that ldes(Γ(p)) = bexc(p).

Inside each cycle, assuming πi is not the first component of the last element of the cycle, if (ππi
, cπi

) >S

(πi, ci), then t(πi, ci) >S t(ππi
, cπi

) and this turns into an L-descent when we remove the parentheses. If πi
is the first component of the last element and suppose we had (ππi

, cπi
) >S (πi, ci), then since ππi

> πi by
construction, cπi is strictly positive. Therefore, t(ππi , cπi) is negative in the second component. Since this is
the first element of a cycle and the last element of the previous cycle is smaller in the first component, this will
create an L-descent between this cycle and the previous cycle.

Similarly, for an instance where πi = i and ci < 0, by the way we have arranged the cycles, there will be
an L-descent between cycles as the last element of the previous cycle will be smaller in the first component.
Therefore, the number of B-excedances in p is the number of L-descents in Γ(p).

6.1 Real-rootedness of the type B restricted Eulerian polynomials

Define the restricted type B Eulerian polynomials, for i ∈ [−n, n] to be Bn,i(t) =
∑

π∈Bn,i

tdesB(π). Using Propo-

sition 5.1, we next prove recurrences for the polynomials Bn,i(t). Let D be the operator
d

dt
.

Proposition 6.1. For positive integers n, i with 1 ≤ i ≤ n− 1, the polynomials Bn,i(t) and Bn,i(t) satisfy the
following recurrences:

Bn,i(t) = [1 + (2n− 3)t]Bn−1,i(t) + 2t(1− t)DBn−1,i(t), (3)

Bn,i(t) = [(2n− 1)t− 1]Bn−1,i(t) + 2t(1− t)DBn−1,i(t) (4)

where B0,0(t) = 1, B1,1(t) = 1, B1,1(t) = t. Moreover, for n ≥ 2, we have Bn,n(t) = Bn,n(t) = 2n−1tAn−1(t).

Proof. We first prove (3). Using Proposition 5.1, we have

Bn,i(t) =

n∑
d=0

Bn,d,it
d =

n∑
d=0

(
(2d+ 1)Bn−1,d,i + (2(n− d− 1) + 1)Bn−1,d−1,i

)
td
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=

n∑
d=0

Bn−1,d,it
d + 2t

n∑
d=0

dBn−1,d,it
d−1 + (2n− 3)t

n∑
d=0

Bn−1,d−1,it
d−1

−2t2
n∑
d=0

(d− 1)Bn−1,d−1,it
d−2

= [1 + (2n− 3)t]Bn−1,i(t) + 2t(1− t)DBn−1,i(t)

This completes the proof of (3). As the proof of (4) is identical, we omit its proof. Finally, if π1 = n, then we
can drop the letter n and treat π2, . . . , πn as a permutation in Sn−1 and this gives Bn,n(t) = 2n−1tAn−1(t).
The proof is complete.

Definition 6.4. Let f be a real-rooted polynomial with real roots α1 ≥ α2 ≥ · · · ≥ αdeg(f) and g be a real-rooted
polynomial with real roots β1 ≥ β2 ≥ · · · ≥ βdeg(g). We say that f interlaces g if

. . . α2 ≤ β2 ≤ α1 ≤ β1.

Note that in this case we must have deg(f) ≤ deg(g) ≤ deg(f) + 1. If f interlaces g or g interlaces f , then we
also say that f and g have interlacing roots.

We need the following result of Obreschkoff [12]. This can also be found in [9, Theorem 4.3].

Theorem 6.1 (Obreschkoff). Let f, g ∈ R[t] with deg(f) ≤ deg(g) ≤ deg(f) + 1. Then, f interlaces g if and
only if c1f + c2g has only real roots for all c1, c2 ∈ R.

We now prove Theorem 1.8 using Theorem 6.1.

Proof of Theorem 1.8. As Bn,n(t) = Bn,n(t) = 2n−1tAn(t), the real-rootedness of the polynomials Bn,n(t) and
Bn,n(t) follow from the real-rootedness of An(t).

We next prove that for 1 ≤ i ≤ n− 1, the polynomials Bn,i(t) are real-rooted. We proceed by induction on
n. When n = 1, the assertion trivially holds. We assume the statement to be true for n− 1 and prove that Bn,i
is real-rooted for 1 ≤ i ≤ n− 1.

Let Fn,i(t) = tBn,i(t). Using (3), it is easy to see that the polynomials Fn,i(t) satisfy the following recurrence
for 1 ≤ i ≤ n− 1:

Fn,i(t) = [(2n− 1)t− 1]Fn−1,i(t) + 2t(1− t)DFn,i(t).

By induction, the polynomial Fn−1,i(t) is real-rooted. Moreover, the polynomial DFn−1,i(t) clearly interlaces
Fn−1,i(t). Therefore, [(2n − 1)t − 1]Fn−1,i(t) interlaces 2t(1 − t)DFn−1,i(t). By Theorem 6.1, the polynomial
Fn,i(t) is real-rooted. Hence, Bn,i(t) is real-rooted. In an identical manner, one can show that the polynomials
Bn,i(t) are real-rooted for 1 ≤ i ≤ n− 1. This completes the proof.

6.2 Gamma positivity of symmetrized type B Eulerian polynomials

The polynomial Bn,i(t), in general, is not palindromic. However, in this subsection, we show that if we add
two such polynomials, then we get a gamma-positive polynomial. Our result is thus similar to the result
[11, Lemma 4.5] of Nevo, Petersen, and Tenner. Recall for 1 ≤ i ≤ n, we had defined Bn,i(t) = Bn,i(t) +

Bn,i(t) and B̃n,i(t) = tBn,i(t) +Bn,i(t). We begin by showing palindromicity of both these polynomials.

Proposition 6.2. For 1 ≤ i ≤ n, the polynomials Bn,i(t) and B̃n,i(t) are palindromic.

Proof. Let i > 0. Define f : Bn,i ∪Bn,i → Bn,i ∪Bn,i by

f(π1, π2, . . . , πn) = π1, π2, . . . , πn.

We note that des(π) = n − des(f(π)). This proves that Bn,i(t) is palindromic. Let Bn,i(t) = a0 + · · · + ant
n.

Then, Bn,i(t) = an + · · ·+ a0t
n. Then,

B̃n,i(t) = an + (a0 + an−1)t+ · · ·+ (an−1 + a0)tn + ant
n+1.

Clearly, B̃n,i(t) is palindromic, completing the proof.

Lemma 6.1. For positive integers n, i with 1 ≤ i ≤ n, we have

Bn+1,i(t) =

1∑
j=n

Bn,j(t) + t

i−1∑
j=1

Bn,j(t) +

n∑
j=i

Bn,j(t), (5)

Bn+1,i(t) = t
i∑

j=n

Bn,j(t) +

1∑
j=i−1

Bn,j(t) + t

n∑
j=1

Bn,j(t). (6)
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Proof. We consider (5) first. Let π ∈ Bn+1,i and we observe the effect of dropping i from the first position
of permutations in Bn+1. Let π′ denote the permutation in B{1,2,...,i−1,i+1,...,n+1} which we get from π after
dropping i.

If n+ 1 ≤ π2 ≤ 1, then dropping π1 = i does not change the number of descents of π. If 1 ≤ π2 ≤ i − 1,
then dropping π1 = i decreases the number of descents of π by 1. Again, if i+ 1 ≤ π2 ≤ n+ 1, then dropping
π1 = i does not cause any change in the number of descents of π. This completes the proof. As the proof of
(6) follows by a similar argument, we omit it.

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. We prove this by induction on n. It is easy to verify that B2,1(t) = (1 + t)2, B̃2,1(t) =

2t(1 + t), B2,2(t) = 4t, and B̃2,2(t) = 2t(1 + t). Thus, the statement is true for n = 2. We assume the statement
to be true for n and prove this for n+ 1. By applying Lemma 6.1, we have

Bn+1,i(t) = Bn+1,i(t) +Bn+1,i(t)

= (1 + t)

i∑
j=n

Bn,j(t) + 2

1∑
j=i−1

Bn,j(t) + 2t

i−1∑
j=1

Bn,j(t) + (1 + t)

n∑
j=i

Bn,j(t)

= (1 + t)

n∑
j=i

Bn,j(t) + 2

i−1∑
j=1

B̃n,j(t).

By induction, Bn,j(t) is gamma positive with center of symmetry n/2 and B̃n,j(t) is gamma positive with center
of symmetry (n+ 1)/2. Therefore, Bn+1,i(t) is gamma positive with center of symmetry (n+ 1)/2. In a similar
way, one can show that

B̃n+1,i(t) = 2t

n∑
j=i

Bn,j(t) + (1 + t)

i−1∑
j=1

B̃n,j(t).

Thus, B̃n+1,i(t) is gamma positive with center of symmetry (n+ 2)/2. Finally, we observe that Bn+1,n+1(t) =

Bn+1,n+1(t) =
∑n
j=1 B̃n,j(t). Hence, both the polynomials Bn+1,n+1(t) and B̃n+1,n+1(t) are gamma positive

and have respective centers of symmetry (n+ 1)/2 and (n+ 2)/2. This completes the proof of the theorem.
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