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Abstract: In this paper, we consider permutations composed of one cycle that avoid the monotone decreasing
permutation k(k− 1) . . . 21, whose cycle form also demonstrates some pattern avoidance. If the cycle is written
in the form with 1 appearing at the beginning of the cycle and this form avoids a pattern of length 3, we find
answers in terms of continued fraction generating functions. We also consider the case that every cyclic rotation
of the cycle form of the permutation avoids a pattern of length 4 and enumerate two such cases.
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1. Introduction and background

The symmetric group Sn consists of permutations (i.e., bijections) of the set [n] = {1, 2, . . . , n}. These per-
mutations can be written either in their cycle form as a product of disjoint cycles or in one-line form, as
π = π1π2 . . . πn where πk = π(k) for any k ∈ [n]. We say a permutation π ∈ Sn is a one-cycle permutation
(also called a cyclic permutation) if it is composed of a single n-cycle. In this paper, we denote by C(π) the
cycle form of a one-cycle permutation π, starting with the element 1; that is, C(π) = (1, c2, c3, . . . , cn) where
ci+1 = π(ci). For example, C(41532) = (1, 4, 3, 5, 2).

Pattern avoidance is typically defined in terms of a permutation’s one-line form. We say that a permutation
π = π1π2 . . . πn ∈ Sn avoids a pattern σ = σ1σ2 . . . σk ∈ Sk if there is no subsequence of π, written in its
one-line form, that appears in the same relative order as σ. For example, the permutation π = 32185476 avoids
the pattern 231, but it does contain the pattern 123 since the subsequence π2π5π7 = 257 is in the same relative
order as 123. Enumeration of pattern-avoiding permutations began in earnest in 1985 with [13] and has been a
topic of study since that time.

One can also define pattern avoidance in the cycle form of a one-cycle permutation. For a permutation
π ∈ Sn, we say that the cycle form C(π) avoids the pattern σ ∈ Sk if there is no subsequence of the list
1, c2, c3, . . . , cn that is in the same relative order as σ. For example, the permutation π = 47236851 has C(π) =
(1, 4, 3, 2, 7, 5, 6, 8) has the property that the cycle form C(π) avoids 231, but that it contains 123 since c3c6c7 =
356 is a 123 pattern.

Pattern avoidance of the cycle form of a one-cycle permutation has been considered previously in [1], in which
the authors consider one-cycle permutations where the one-line form of π avoids one pattern in S3 and the cycle
form C(π) avoids another pattern in S3. It has also been considered in [3] in which both the one-line form of
a permutation and its standard cycle form (i.e. its image under the so-called fundamental bijection) avoids a
pattern in S3. Interestingly, the avoidance of patterns in the cycle form of a permutation has recently been
used in [4] to characterize so-called shallow permutations, which are equivalent to unlinked permutations [15].
Avoidance of the cycle form has also been considered when characterizing almost-increasing permutations in [2,8]
and when counting occurrences of adjacent q-cycles in permutations in [6]. Another related topic is the study
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of circular pattern avoidance [5, 7, 11, 14], in which all cyclic rotations of a permutation avoid a given pattern.
This topic becomes particularly relevant in Section 3 of this paper.

In this paper, we consider one-cycle permutations that avoid the decreasing pattern δk = k(k − 1) . . . 21 in
its one-line form and another pattern in its cycle form C(π) or in all cyclic rotations of C(π). In Section 2, we
let An(σ; τ) denote the set of permutations π ∈ Sn such that the one-line form avoids σ and the cycle form
C(π) avoids τ ; we also denote an,k(τ) = |An(δk; τ)|. For example, π = 531269478 avoids 4321 with C(π) =
(1, 5, 6, 9, 8, 7, 4, 2, 3) avoiding 213, so π ∈ A9(4321; 213). In this paper, we find An(δk; τ) for τ ∈ S3 \ {321}.

In particular, in Theorem 2.1 in Section 2.1, we find that for k ≥ 4, fk(z; 213) =
∑

n≥0 an,k(213)zn is given
by the height k continued fraction

fk(z; 213) =
z

1 − z

1 − z

1 − . . . − z
1− z.

In Section 2.2, we show fk(z; 312) = fk(z; 213). We also find in Theorem 2.3 of Section 2.3 that if fk(z; 231) =∑
n≥0 an,k(231)zn, we have a generating function that depends on the continued fraction for fk(z; 213):

fk(z; 231) =
fk−1(z; 213)

(
[fk−2(z; 213)]2 − fk−2(z; 213) + 1

)
1− z

.

In Section 3, we let A◦n(σ; τ) denote the set of permutations π ∈ Sn such that the one-line form avoids σ and
all cyclic rotations of the cycle form C(π) avoid τ ; we denote a◦n,k(τ) = |A◦n(δk; τ)|. For example, π = 392145678
avoids 4321 with all cyclic rotations of C(π) = (1, 3, 2, 9, 8, 7, 6, 5, 4) avoiding 1342, so π ∈ A◦9(4321; 1342). Up
to symmetry and cyclic rotation, there are three cases in S4 to consider, and we find the enumeration for two
of these cases. In Theorem 3.1, we find that a◦n,3(1324) = 2n−2 and a◦n,k(1324) = F2n−3 for k ≥ 4, where Fn is
the nth Fibonacci number. In Theorem 3.2 we find that if f◦k (z; 1342) =

∑
n≥0 a

◦
n,k(1342)zn, then

f◦k (z; 1342) =
1− 3z + 2z2 + z3

(1− z)2(1− 2z)
− 2zk+1

(1− z)k−1(1− 2z)
.

We conclude the paper in Section 4 with some conjectures, open questions, and directions for further research.

2. Avoidance in the cycle form C(π)

In this section, we enumerate one-cycle permutations such that π avoids the pattern δk = k(k − 1) . . . 21 and
the cycle form C(π) avoids the pattern τ for some τ ∈ S3. We solve this for all but one τ ∈ S3; the case when
τ = 321 is left as an open question.

We first note that the cases when τ = 123 or τ = 132 is trivial. Indeed, the only permutation π ∈ Sn
such that C(π) avoids 123 is π = n12 . . . (n − 1) with C(π) = (1, n, n − 1, . . . , 3, 2) and so an,k(123) = 1 for
all n ≥ 1 and k ≥ 3. Similarly, the only permutation π ∈ Sn such that C(π) avoids 132 is π = 23 . . . n1 with
C(π) = (1, 2, 3, . . . , n) and so an,k(132) = 1 for all n ≥ 1 and k ≥ 3.

We will next consider the case when τ = 213, followed by the case when τ = 231, both of which give
interesting answers in terms of generating functions.

2.1 Enumerating An(δk; 213)

In this section, we consider one-cycle permutations that avoid δk := k(k − 1) · · · 21 in one-line form and avoid
213 in cycle form. Notice that if π is a permutation avoiding δk, then π necessarily avoids δi for all i < k. Thus,
an,k(213) ≥ an,k−1(213) for k ≥ 2. Furthermore, since one-cycle permutations on [n] avoiding 213 in cycle form
are in one-to-one correspondence with permutations on [n− 1] avoiding 213, we have an,k(213) is the (n− 1)-st
Catalan number for k ≥ n.

As an example, consider n = 5, and notice there are 14 one-cycle permutations on 5 elements whose cycle
form avoids 213. All 14 of these permutations avoid δ5 = 54321 in one-line form, and all but the permutation
54132 avoid δ4 = 4321. There are eight one-cycle permutations that avoid 213 in cycle form while avoiding
δ3 = 321 in one-line form, namely, 31452, 31524, 41253, 51234, 23451, 23514, 24153, and 25134.

Thus we have

a5,k(213) =


0 if k ≤ 2

8 if k = 3

13 if k = 4

14 if k ≥ 5.
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k\n 1 2 3 4 5 6 7 8 9

2 1 0 0 0 0 0 0 0 0
3 1 1 2 4 8 16 32 64 128
4 1 1 2 5 13 34 89 233 610
5 1 1 2 5 14 41 122 365 1094
6 1 1 2 5 14 42 131 417 1341
7 1 1 2 5 14 42 132 428 1416
8 1 1 2 5 14 42 132 429 1429
9 1 1 2 5 14 42 132 429 1430

Figure 1: The number of permutations in An(δk; 213); that is, the number of one-cycle permutations of length
n avoiding k(k − 1) · · · 1 in one-line form and avoiding 213 in cycle form.

Figure 2.1 shows values of an,k(213) for other small values of n and k.
In general, we will show that the permutations in An(δk; 213) can be enumerated using a self-convolution

recurrence as stated in the following theorem. The corresponding generating function can be found in Corol-
lary 2.1.

Theorem 2.1. For n ≥ 2 and k ≥ 4,

an,k(213) =

n−1∑
i=1

ai,k(213)an−i,k−1(213),

with base cases

• a1,1(213) = 0 and a1,k(213) = 1 for k ≥ 2;

• an,1(213) = an,2(213) = 0 for n ≥ 2; and

• an,3(213) = 2n−2 for n ≥ 2.

The remainder of this section will be devoted to proving this theorem. We begin by introducing new notation.
Let Bn(δk; 213) be the set of permutations in An(δk; 213) with the additional property that π1 = n, and let
bn,k(213) = |Bn(δk; 213)|. It turns out that each permutation in π ∈ An(δk; 213) can be decomposed into two
unique permutations based on the value of π1; if π1 = j, one of the permutations in the decomposition is in
Bj(δk; 213), while the other is in An+1−j(δk; 213).

Lemma 2.1. For n ≥ 2 and k ≥ 3,

an,k(213) =

n∑
j=2

bj,k(213)an+1−j,k(213).

Proof. Let j ∈ [2, n]. We show that the number of permutations in An(δk; 213) where π1 = j is equal to
bj,k(213)an+1−j,k(213). To this end, let π ∈ An(δk; 213) and suppose that π1 = j. Since C(π) avoids 213, we
can write

C(π) = (1, j, c3, c4, . . . , cn−j+2, cn−j+3, . . . , cn)

where {c3, . . . , cn−j+2} = [j + 1, n] and {cn−j+3, . . . , cn} = [2, j − 1]. In one-line form, we then have

π = jπ2π3 . . . πj−1πj . . . πn

where {π2, . . . , πj−1} = [1, j − 1] \ {cn−j+3} and {πj , . . . , πn} = [j + 1, n] ∪ {cn−j+3}. Notice that this implies
that if π did contain δk as a pattern, then the δk pattern must be composed of only elements of [1, j] or only
elements of [j + 1, n] ∪ {cn−j+3}.

We now create two one-cycle permutations from π that both avoid δk. Define π′ to be the permutation
formed by deleting the elements in [2, j] from C(π). More formally,

C(π′) = (1, c3 − j + 1, c4 − j + 1, . . . , cn−j+2 − j + 1).

Equivalently, in one-line form, π′ can be thought of as deleting the elements in {π1, π2, · · · , πj−1} from π. Thus
π′ consists of the last n − j + 1 elements of π in the same relative order. Therefore π′ is cyclic with C(π′)
avoiding 213 and π′ avoids δk in one-line form, and we have π′ ∈ An+1−j(δk; 213).

ECA 5:1 (2025) Article #S2R3 3



Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske

Similarly, define π′′ to be the permutation formed by deleting the elements in [j + 1, n] from C(π). In this
case,

C(π′′) = (1, j, cn−j+3, . . . , cn),

and
π′′ = jπ2π3 · · ·πj−1cn−j+3.

We again see that π′′ is cyclic, its cycle form avoids 213, and its one-line form avoids δk. The permutation π′′

has the additional condition that 1 maps to j and thus π′′ ∈ Bj(δk; 213).
Conversely, suppose π′ is any permutation in An+1−j(δk; 213) and π′′ is any permutation in Bj(δk; 213) with

C(π′) = (1, c′2, c
′
3, . . . , c

′
n+1−j)

and
C(π′′) = (1, j, c′′3 , c

′′
4 , . . . , c

′′
j ).

Create the permutation π by

C(π) = (1, j, c′2 + j − 1, c′3 + j − 1, . . . , c′n+1−j + j − 1, c′′3 , c
′′
4 , . . . , c

′′
j ).

Notice C(π) avoids 213 and its one-line form must avoid δk since the one-line form of both π′ and π′′ did.
Thus the process is invertible and the number of permutations in An(δk; 213) where π1 = j is equal to
bj,k(213)an+1−j,k(213). Summing over all possible j gives the desired result.

The following example, along with Figure 2, illustrates the bijective correspondence between An(δk; 213)
and Bj(δk; 213)×An+1−j(δk; 213).

Example 2.1. Consider the permutation π′ = 4315672 = (1, 4, 5, 6, 7, 2, 3) ∈ A7(4321; 213) and the permutation
π′′ = 53412 = (1, 5, 2, 3, 4) ∈ B5(4321; 213). Then we can obtain a permutation π ∈ A11(4321; 213) as described
in the preceding proof:

π = 5 3 4 1 8 7 2 9 10 11 6 = (1, 5, 8, 9, 10, 11, 6, 7, 2, 3, 4),

as shown in Figure 2.

π = 5 3 4 1 8 7 2 9 10 11 6
= (1, 5, 8, 9, 10, 11, 6, 7, 2, 3, 4)

π′ = 4 3 1 5 6 7 2 π′′ = 5 3 4 1 2
= (1, 4, 5, 6, 7, 2, 3) = (1, 5, 2, 3, 4)

←→

Figure 2: The permutation π ∈ A11(4321; 213) with π1 = 5 can be decomposed into a permutation
π′ ∈ A7(4321; 213) and π′′ ∈ B5(4321; 213).

Because each element in An(δk; 213) can be decomposed as two permutations in Bj(δk; 213) and in
An+1−j(δk; 213), being able to enumerate Bj(δk; 213) will help us enumerate An(δk; 213). We will enumer-
ate Bn(δk; 213) by first counting all of those permutations in Bn(δk; 213) with the additional condition πn = 2.
The next lemma shows that set of permutations in Bn(δk; 213) with πn = 2 is in bijective correspondence with
An−2(δk−2; 213).

Lemma 2.2. For n ≥ 3, the number of permutations in Bn(δk; 213) with πn = 2 is equal to an−2,k−2(213).

ECA 5:1 (2025) Article #S2R3 4
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Proof. Suppose π is a one-cycle permutation on n elements where C(π) avoids 213, and with the additional
conditions that π1 = n and πn = 2. Then

C(π) = (1, n, 2, c4, . . . , cn).

Now consider the permutation π′ where C(π′) is formed by deleting n and 2 from C(π). In other words,

C(π′) = (1, c4 − 1, . . . , cn − 1).

In one-line form, we note that π′ is formed from π by deleting n and 2, and conversely, π is obtained from π′

by inserting n at the front and 2 at the end of π′.
We further claim that if δk−2 is a pattern in π′, then there must be an occurrence of δk−2 that does not

use the element 1. Toward a contradiction, suppose we have an occurrence of δk−2 in π′ that uses 1, namely
π′i1 . . . π

′
ik−2

with π′ik−2
= 1. Then, we can show that 2 must occur after 1 in π′ and thus the pattern induced

by π′i1 . . . π
′
ik−3

2 is also a δk−2 pattern. To see this suppose 2 appears before 1 in π′. Then if πr = 1 and πs = 2

with 1 < s < r, the pattern s2r appears in C(π′), but this is a 213 pattern, contradicting that C(π′) avoids
213. Notice that if s = 1, then the cycle form starts (1, 2, . . .), and thus we can delete the 2 and apply the same
argument since this 2 cannot be part of a 213 pattern in C(π) or a δk in the one-line form of π. This implies
that π′ avoids δk−2 if and only if π avoids δk.

We have shown that π ∈ Bn(δk; 213) with πn = 2 if and only if π′ ∈ An−2(δk−2; 213) and therefore the result
holds.

To count those permutations in Bn(δk; 213) where πn = j ∈ [3, n−1], we can consider a decomposition based
on j as seen in the next result.

Lemma 2.3. For n ≥ 3 and k ≥ 2,

bn,k(213) =

n−1∑
j=2

bj,k(213)an−j,k−2(213).

Proof. We show that the number of permutations in Bn(δk; 213) where πn = j ∈ [3, n − 1] is equal to
bj,k(213)an+1−j,k(213). To this end, let π ∈ Bn(δk; 213) and suppose that πn = j.

Since C(π) avoids 213, we can write

C(π) = (1, n, j, c4, c5, . . . , cn−j+2, cn−j+3, . . . , cn)

where {c4, . . . , cn−j+2} = [j + 1, n − 1] and {cn−j+3, . . . , cn} = [2, j − 1]. This implies that π must be of the
form

π = nπ2π3 . . . πj−1πj . . . πn−1j

where {π2, . . . , πj−1} = [1, j − 1] \ {cn−j+3} and {πj , . . . , πn−1} = [j + 1, n− 1] ∪ {cn−j+3}. Now, if π contains
δk as a pattern, it must either contain only elements of [1, j] ∪ {n} or only elements of [j, n] ∪ {cn − j + 2}.
Therefore, if π avoids δk, we can decompose π into two smaller one-cycle permutations, each of which avoids
δk, namely, π′ ∈ Bn−j+2(δk; 213) and π′′ ∈ Bj(δk; 213), defined by

C(π′) = (1, n− j + 2, 2, c4 − j + 2, c5 − j + 2, . . . , cn−j+2 − j + 2)

and
C(π′′) = (1, j, cn−j+3, . . . , cn).

Notice that π′ can be any permutation in Bn−j+2(δk; 213) with π′1 = n − j + 2 (the largest element) and
π′n−j+2 = 2, while π′′ can be any permutation in Bj(δk; 213) with π′′1 = j. By Lemma 2.2, the number of such
π′ is given by an−j,k−2(213) and so the recurrence follows.

We again illustrate this decomposition with a specific example.

Example 2.2. Consider the permutation

π = 13 1 2 3 7 4 6 9 12 5 10 11 8 = (1, 13, 8, 9, 12, 11, 10, 5, 7, 6, 4, 3, 2).

Notice that π ∈ B13,4 and that π13 = 8. Following the proof of the preceding lemma, we define two new permu-
tations, π′ and π′′ by

C(π′) = (1, 7, 2, 3, 6, 5, 4) and C(π′′) = (1, 8, 5, 7, 6, 4, 3, 2).

We note that π′ ∈ B7(δ4; 213) and π′′ ∈ B8(δ4; 213) as desired. A pictorial representation of this decomposition
is shown in Figure 3.

ECA 5:1 (2025) Article #S2R3 5
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π = 13 1 2 3 7 4 6 9 12 5 10 11 8
= (1, 13, 8, 9, 12, 11, 10, 5, 7, 6, 4, 3, 2)

π′ = 7 3 6 1 4 5 2 π′′ = 8 1 2 3 7 4 6 5
= (1, 7, 2, 3, 6, 5, 4) = (1, 8, 5, 7, 6, 4, 3, 2)

←→

Figure 3: The permutation π ∈ B13(4321; 213) with π13 = 8 can be decomposed into a permutation
π′ ∈ B7(4321; 213) and π′′ ∈ B8(4321; 213).

Lemma 2.3 gives bn,k as a sum of products of bj,k and an−j,k−2 (for j from 2 to n − 1) while Lemma 2.1
gives an,k as a sum of products of bj,k and an+1−j,k (for j from 2 to n). We can combine these results to get
bn+1,k = an,k−1 as seen in the next lemma.

Lemma 2.4. For n ≥ 3 and k ≥ 3,
bn+1,k(213) = an,k−1(213).

Proof. We prove this by induction. It is straightforward to check the base cases. Let us assume the statement
is true for all N < n and K < k. Notice that by Lemmas 2.1 and 2.3, we can write

bn+1,k(213) =

n∑
i=2

bi,k(213)an+1−i,k−2(213)

and

an,k−1(213) =

n∑
j=2

bj,k−1(213)an+1−j,k−1(213).

Using induction, we can say that bj,k−1(213) = aj−1,k−2(213) and an+1−j,k−1(213) = bn+2−j,k(213). Reindexing,
we can see that the new formula for an,k−1(213) coincides with that for bn+1,k(213).

We are now ready to prove our main result as stated in Theorem 2.1.

Proof of Theorem 2.1. The base cases a1,1(213) = 0 and a1,k(213) = 1 for k ≥ 2 are clear since there is only
one permutation of length 1, which must avoid any pattern of length k ≥ 2. For n ≥ 2, it is also clear that
an,1(213) = an,2(213) = 0 since it is impossible for any permutation in Sn to avoid the pattern of length 1 and
impossible for a one-cycle permutation to avoid 21. The base case an,3(212) = 2n−2 for n ≥ 2 can be found
in [1, Theorem 3.24]. Finally, by combining Lemmas 2.1 and 2.4 and reindexing, the recurrence in the statement
of theorem follows.

For any fixed k, the generating function for an,k(213) can be described recursively as seen in the following
corollary.

Corollary 2.1. Let fk(z; 213) be the generating function for the an,k(213). Then for k ≥ 4,

fk(z; 213) =
z

1− fk−1(z; 213)

with f1(z; 213) = 0, f2(z; 213) = z, and f3(z; 213) = z(1−z)
1−2z .

Notice that since f3(z; 213) can also be written as

f3(z; 213) =
z

1− z
1−z

,

ECA 5:1 (2025) Article #S2R3 6
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k\n 1 2 3 4 5 6 7 8 9

2 1 0 0 0 0 0 0 0 0
3 1 1 2 3 4 5 6 7 8
4 1 1 2 5 11 23 47 95 191
5 1 1 2 5 14 40 113 314 860
6 1 1 2 5 14 42 130 406 1267
7 1 1 2 5 14 42 132 427 1403
8 1 1 2 5 14 42 132 429 1428
9 1 1 2 5 14 42 132 429 1430

Figure 4: The number of permutations in An(δk; 231); that is, the number of one-cycle permutations of length
n avoiding k(k − 1) · · · 1 in one-line form and avoiding 231 in cycle form.

the generating function described in Corollary 2.1 is a continued fraction generating function. For example, for
k = 4,

f4(z; 213) =
z

1− f3(z; 213)
=

z

1− z
1− z

1−z

= z + z2 + 2z3 + 5z4 + 13z5 + 34z6 + 89z7 + · · · ,

where the coefficient of zn gives the number of one-cycle permutations π on [n] that avoid 4321 whose cycle
form C(π) avoids 213. Similarly, for k = 5,

f5(z; 213) =
z

1− f4(z; 213)
=

z

1− z
1− z

1− z
1−z

= z + z2 + 2z3 + 5z4 + 14z5 + 41z6 + 122z7 + · · · ,

where the coefficient of zn gives the number of one-cycle permutations π on [n] that avoid 54321 whose cycle
form C(π) avoids 213.

Remark 2.1. For k ≥ 4, these sequences given by the recurrence and generating function in Theorem 2.1 and
Corollary 2.1 can be found in OEIS [12, A080934]. This implies that the generating function fk(213) is also
equal to

fk(213) = z · gk+1(z)

gk(z)

where gk(x) is the k-th Fibonacci polynomial defined by g0(z) = 0, g1(z) = 1, and gi+1(z) = gi(z)− t · gi−1(t).
It also follows that an(δk; 213) is equal to the number of permutations of length n− 1 that classically avoid both
231 and k(k − 1) . . . 21, as well as the number of rooted ordered trees on n nodes of height at most k − 1 and
the number of Dyck paths of semi-length n− 1 and height at most k− 1. A direct bijection would be interesting
but is not immediately obvious from the proof above because of the induction used in Lemma 2.7.

2.2 Enumerating An(δk; 312)

We now briefly consider An(δk; 312). Since 312 is the reverse of 213, C(π) avoids 213 if and only if C(π)r =
(cn, cn−1, . . . , c2, 1) avoids 312. Furthermore, we must have C(π−1) = (1, cn, cn−1, . . . , c2), which also necessarily
avoids 312 since the only change from C(π)r = (cn, cn−1, . . . , c2, 1) is that the 1 was moved to the front. Finally,
since the inverse of the decreasing monotone pattern is itself, we have that an,k(213) = an,k(312). We summarize
these results in the following theorem.

Theorem 2.2. For n ≥ 1 and k ≥ 1, an,k(312) = an,k(213). Furthermore, if fk(z; 312) is the generating
function for an,k(312), then fk(312; z) = fk(213; z).

2.3 Enumerating An(δk; 231)

In this section, we consider one-cycle permutations that avoid δk in one-line form and avoid 231 in cycle form.
We again define an,k(231) = |An(δk; 231)| with a summary of small values of an,k(231) found in Figure 2.3.
Interestingly, this case will use the results in Section 2.1. There are multiple useful correspondences between
permutations inAn(δk; 231) and one-cycle permutations whose cycle avoids 213. The following lemma formalizes
some of these facts.

Lemma 2.5. Let n ≥ 3 and k ≥ 5. Then

1. The number of permutations π ∈ An(δk; 231) with π1 = n− 1 and πn = 1 is equal to an−2,k−2(213).
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2. The number of permutations π ∈ An(δk; 231) with π1 = n and πn = 2 is equal to an−2,k−2(213).

3. The number of permutations π ∈ An(δk; 231) with π1 = n, πn−1 = 1, and πn = n− 2 is an−3,k−2(213).

Proof. We will find a one-to-one correspondence between permutations π ∈ An(δk; 231) with π1 = n − 1 and
πn = 1 and permutations π′ ∈ An(δk; 213) with the additional constraints that π′1 = n and π′n = 2. When
this correspondence is found, Lemma 2.2 can be used to show that the number of desired permutations is then
an−2,k−2(213).

To that end, let π ∈ An(δk; 231) with π1 = n− 1 and πn = 1. In cycle form, we have

C(π) = (1, n− 1, c3, c4, . . . , cn−1, n).

Consider the permutation π′ = πrc. Since π1 = n − 1 and πn = 1, we have π′1 = n and π′n = 2. Furthermore,
the cycle form of π′ is complemented, and thus is given by

C(π′) = (1, n, 2, n+ 1− c3, n+ 1− c4, . . . , n+ 1− cn−1).

Thus C(π′) avoids 213, and π′ avoids δk. Because this process is invertible, the result holds.
Now suppose π ∈ An(δk; 231) with π1 = n and πn = 2. Then

C(π) = (1, n, 2, c4, c5, . . . , cn)

and
π = nπ2π3 · · ·πn−12.

Let us define π′′ by complementing C(π) and deleting n, so that

C(π′′) = (1, n− 1, n+ 1− c4, n+ 1− c5, . . . , n+ 1− cn).

We claim that π′′ ∈ Bn−1(δk; 213), and in fact all such elements in Bn−1(δk−1; 213) can be obtained this way.
First, it is clear that C(π′′) avoids 231 since the elements after n − 1 must avoids 231. Next, let us notice
that the permutation πrc, obtained by complementing the cycle form of π, is given by πrc = (n − 1)(n + 1 −
πn−1) . . . (n+ 1− π2)1 avoids δk. The relationship between πrc and π′′ can be seen as follows. If πrc

` = n, then
π′′i = πrc

i for all i ∈ [n− 1] \ {`} and π′′` = 1.
To see that π′′ does not contain the pattern δk−1, we use contradiction. If it did have a δk−1, then by the

proof of Lemma 2.2, there is a δk−1 pattern that does not use 1. This pattern would then also appear in πrc,
and together with the 1 at the end of πrc, we would have a δk pattern in πrc, which is a contradiction. Thus
π′′ avoids δk−1 if and only if πrc avoids δk. This, together with the fact that an−2,k−2(213) = bn−1,k−1(213) by
Lemma 2.4 implies the second bullet point in the theorem.

Finally, suppose π ∈ An(δk; 231) with π1 = n, πn−1 = 1, and πn = n− 2. Then

C(π) = (1, n, n− 2, c4, c5, . . . , cn−1, n− 1)

and
π = nπ2 · · ·πn−21(n− 2).

In this case, consider the permutation π′′′ formed by deleting 1, n, and n − 2 from C(π) and then taking the
complement. In other words,

C(π′′′) = (1, n− 1− c4, n− 1− c5, . . . , n− 1− cn−1).

We note that C(π′′′) is 213-avoiding since C(π) is 231-avoiding and 231c = 213. In one-line form, π′′′ is formed
by deleting 1, n, and n− 2 from the one-line form of π and then taking the reverse complement. Thus,

π′′′ = (n− 2− πn−2)(n− 2− πn−3) · · · (n− 2− π2).

Since δrck = δk, we see that π′′′ clearly avoids δk. However, any maximal decreasing sequence in π must use n
and either 1 or n − 2, so π′′′ avoids δk−2 and π′′′ ∈ An−3(δk; 213). Because this process is invertible, we have
the desired result.

We now illustrate the correspondences described in Lemma 2.5 with some examples.

Example 2.3. First, consider the permutation

π = 11 4 2 9 3 5 6 7 10 12 8 1 with C(π) = (1, 11, 8, 7, 6, 5, 3, 2, 4, 9, 10, 12)
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in A12(54321; 231) corresponding to the first bullet of Lemma 2.5. We can obtain

π′ = πrc = 11 5 1 3 6 7 8 10 4 11 9 2 with C(π′) = (1, 12, 2, 5, 6, 7, 8, 10, 11, 9, 4, 3)

which is in A12(54321; 213) and has the property that π′1 = 12 and π′12 = 2.
Now, consider the permutation

π = 12 8 9 3 4 5 6 7 10 11 1 2 with C(π) = (1, 12, 2, 8, 7, 6, 5, 4, 3, 9, 10, 11)

in A12(54321; 231) corresponding to the second bullet of Lemma 2.5. We can obtain π′′ by complementing C(π)
and deleting n = 12, obtaining

π′′ = C(π) = 11 1 2 3 6 7 8 9 10 4 5 = (1, 11, 5, 6, 7, 8, 9, 10, 4, 3, 2)

which is an element of B11(4321; 213).
Finally, consider the permutation

π = 83527416 with C(π) = (1, 8, 6, 4, 2, 3, 5, 7) ∈ A8(δ6; 231)

corresponding to the third bullet of Lemma 2.5. Following the proof of Lemma 2.5, we create the corresponding
permutation π′′′ ∈ A5(δ4; 213) by deleting 1, 8, and 6 from π and then taking the reverse-complement. In this
case, deleting the appropriate values yields 35274 or 24153. The reverse-complement is then π′′′ = 31524 =
(1, 3, 5, 4, 2) which is in A5(δ4; 213).

As in Section 2.1, we continue by defining Bn(δk; 231) to be the set of permutations in An(δk; 231) with the
additional property that π1 = n, and we let bn,k(231) = |Bn(δk; 231)|. We can show that any permutation in
An,k(231) that is not in Bn(δk; 231) can be decomposed into two unique permutations based on the value of π1.
If π1 = j, one of the permutations in the decomposition is in Aj+1(δk; 231) with some additional constraints
while the other is in An+1−j(δk; 231). The subsequent lemma enumerates permutations in An(δk; 231) based
on this decomposition. Notice that the recurrence in the next lemma also depends on the values of an,k(213)
found in the previous section.

Lemma 2.6. For n ≥ 3 and k ≥ 5,

an,k(231) = bn,k(231) +

n−1∑
j=2

aj−1,k−2(213)an+1−j,k(231).

Proof. Notice that since bn,k(231) is the number of permutations π ∈ An(δk; 213) with the property that π1 = n,
we need only consider the permutations in An,k(231) that do not begin with n. Let j ∈ [2, n − 1]. We show
that the number of permutations in An(δk; 231) where π1 = j < n is equal to aj−1,k−2(213)an+1−j,k(231). To
this end, let π ∈ An(δk; 231) and suppose that π1 = j. Since C(π) avoids 231, we can write

C(π) = (1, j, c3, c4, . . . , cj , cj+1, . . . , cn)

where {c3, . . . , cj} = [2, j−1] and {cj+1, . . . , cn} = [j+ 1, n], which is nonempty. In one-line form, we then have

π = jπ2π3 . . . πjπj+1 . . . πn

where {π2, . . . , πj} = [2, j − 1] ∪ {cj+1} and {πj+1, . . . , πn} = [j + 1, n] \ {cj+1} ∪ {1}. Notice that this implies
that if π did contain δk as a pattern, then the δk pattern must be composed of only elements of [1, j] ∪ {cj+1}
or only elements of [j + 1, n] ∪ {1}.

We now create two one-cycle permutations from π that both avoid δk. Define π′ to be the permutation
formed by deleting the elements in [2, j] from C(π). More formally,

C(π′) = (1, cj+1 − j + 1, . . . , cn − j + 1).

Equivalently, in one-line form, π′ can be thought of as deleting the elements in [2, j] = {π1, π2, · · · , πj} \
{πcj} from π. Thus π′ is cyclic with C(π′) avoiding 231 and π′ avoids δk in one-line form, and thus π′ ∈
An+1−j(δk; 231).

Similarly, define π′′ to be the permutation formed by deleting the elements in [j + 1, n] \ {cj+1} from C(π).
In this case,

C(π′′) = (1, j, c3, . . . , cj , j + 1)

and
π′′ = jπ2π3 · · ·πj−1πj1

where we take πcj = j + 1. We again see that π′′ is cyclic, its cycle form avoids 231, and its one-line form
avoids δk. The permutation π′′ ∈ Aj+1(δk; 231) has the additional conditions that π1 = j and πj+1 = 1. By
Lemma 2.5, the number of such permutations is equal to aj−1,k−2(213).
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Example 2.4. Consider the permutation

5 8 2 3 4 9 6 7 11 1 10 = (1, 5, 4, 3, 2, 8, 7, 6, 9, 11, 10)

in A11(4321; 231). Then, we can obtain the permutations π′ = 4523671 = (1, 4, 3, 2, 5, 6, 7) and π′′ = 562341 =
(1, 5, 4, 3, 2, 6) as described in the preceding proof and as shown in Figure 5.

π = 5 8 2 3 4 9 6 7 11 1 10
= (1, 5, 4, 3, 2, 8, 7, 6, 9, 11, 10)

π′ = 4 5 2 3 6 7 1 π′′ = 5 6 2 3 4 1
= (1, 4, 3, 2, 5, 6, 7) = (1, 5, 4, 3, 2, 6)

←→

Figure 5: The permutation π ∈ A11(4321; 213) with π1 = 5 can be decomposed into a permutation
π′ ∈ A7(4321; 231) and π′′ ∈ A6(4321; 231) with some additional constraints.

We now consider permutations in Bn(δk; 231) and enumerate these based on one-cycle permutations that
avoid 213 in cycle form and δk−2 in one-line form.

Lemma 2.7. For n ≥ 3 and k ≥ 5,

bn,k(231) = bn−1,k(231) +

n−2∑
j=2

aj−1,k−2(213)an−j,k−2(213).

Proof. We will count permutations π ∈ Bn(δk; 231) based on the value of πn. We first show that the number
with πn = n− 1 is bn−1,k(231). Let π ∈ Bn(δk; 231) with πn = n− 1. Then

C(π) = (1, n, n− 1, c4, . . . , cn).

Let π′ be the permutation formed by deleting n − 1 from π. Then π′ clearly avoids δk if and only if π does.
Also, the cycle form of π′ is

C(π′) = (1, n− 1, c4, . . . , cn)

and thus, π′ ∈ Bn−1(δk; 231). Because this process is invertible, there are bn−1,k such permutations as desired.
Now suppose π ∈ Bn(δk; 231) with πn = j for some j ∈ [2, n− 2]. Then

C(π) = (1, n, j, c4, c5, . . . , cj+1, cj+2, . . . , cn)

where {c4, . . . , cj+1} = [2, j − 1] and {cj+2, . . . , cn} = [j + 1, n− 1]. In one-line form, we then have

π = nπ2π3 · · ·πjπj+1 · · ·πn−1j

where {π2, . . . , πj} = [2, j− 1]∪ {cj+2} and {πj+1, . . . , πn−1} = [j + 1, n− 1] \ {cj+2} ∪ {1}. We now create two
one-cycle permutations from π that both avoid δk.

Let π′ be the permutation formed by deleting the elements in {cj+3, cj+4, . . . , cn} from C(π). Thus,

C(π′) = (1, j + 2, j, c4, . . . , cj+1, j + 1),

and in one-line form
π′ = (j + 2)π2π3 · · ·πj1j.

Notice that π′ avoids δk and that C(π′) avoids 231. By Lemma 2.5, there are aj−1,k−2(213) such permutations.
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We form the second permutation in the decomposition, π′′, by deleting {c4, . . . , cj+1} from C(π). Thus,

C(π′′) = (1, n− j + 2, 2, cj+2 − j + 2, cj+3 − j + 2, . . . , cn − j + 2)

and
π′′ = (n− j + 2)(cj+2 − j + 2)(πj+1 − j + 2)(πj+2 − j + 2) · · · (πn−1 − j + 2)2.

Notice π′′ must avoid δk because it is a subpattern of π which avoids δk. Since this permutation starts with its
largest element and ends with 2, by Lemma 2.5, we see that the number of such permutations is an−j,k−2(213).

Since, as we stated above, any permutation π of this form must look like

π = nπ2π3 · · ·πjπj+1 · · ·πn−1j

where {π2, . . . , πj} = [2, j−1]∪{cj+2} and {πj+1, . . . , πn−1} = [j+ 1, n−1]\{cj+2}∪{1}, any δk pattern must
only consist of elements from either [1, j − 1]∪ {cj+1, n} or from {1} ∪ [j, n], this implies that doing the inverse
process, building a permutation π from π′ and π′′ will result in a permutation that still avoids δk.

Given these results in Lemma 2.6, we can define a generating function for bn,k(231) based on the generating
function for an,k(213).

Corollary 2.2. Lt fk(z; 213) be the generating function for an,k(213) and let gk(z; 231) be the generating
function for bn,k(231). Then for k ≥ 5,

gk(z; 231) =
z

1− z
[
1− zfk−2(z; 213) + (fk−2(z; 213))2

]
Using this Corollary along with Lemma 2.6, we can now find the generating function for an,k(231).

Theorem 2.3. Let fk(z; 231) be the generating function for an,k(231). Then for k ≥ 5, fk(z; 231) can be written
in terms of the generating functions for an,k(213):

fk(z; 231) =
fk−1(z; 213)

(
[fk−2(z; 213)]2 − fk−2(z; 213) + 1

)
1− z

.

We also have

f4(z; 231) =
z(z3 + z2 − 2z + 1)

(1− z)(1− 2z)
,

f3(z; 231) =
z

(1− z)2

and f2(z; 231) = f1(z; 231) = z.

Proof. For k ≥ 5, Corollary 2.2 and Lemma 2.6 combine to give us:

fk(z; 231) =
z([fk−2(z; 213)]2 − fk−2(z; 213) + 1)

(1− z)(1− fk−2(z; 213))
.

Using Corollary 2.1, we can simplify this result as seen in the theorem. The case for k = 3 follows from [1,
Theorem 4.16] and the case when k ≤ 2 is clear.

All that remains is the case when k = 4. Let us first notice that bn,4(231) = n − 2. Indeed, it is easy
to see there are bn−1,4 permutations that have πn = n − 1, and one permutation that has πn = 2. We need
only show that there are no permutations with πn = j for 3 ≤ j ≤ n − 2. If there were such a permutation,
we would have π = (1, n, j, c3, . . . , cj+1, cj+2, . . . , cn) with ci > j for i ≥ j + 2 and ci < j for 3 ≤ i ≤ j + 1.
Thus π1πcj+1

πjπcn = ncj+2c31 is a 4321 pattern. Next, let us see that any permutation in An(4321; 231) with
π1 = j < n must be of the form

C(π) = (1, j, j − 1, . . . , 3, 2, cj+1, . . . , cn)

where the permutation obtained by removing the elements in [2, j] is in An−j+1(4321; 231). If this were not the
case and i was the first place ci < ci+1 for some i < j + 1, then jci+1ci1 would be a 4321 pattern in π. Thus we
know that

an,4(231) = bn,4(231) +

n−1∑
j=2

an−j+1(231),

which together with the fact that bn,4(231) = n− 2 implies the given generating function for k = 4.

For example, consider k = 5. We have

f5(z; 231) =
f4(z; 213)

(
[f3(z; 213)]2 − f3(z; 213) + 1

)
1− z

=
z(1− 2z)

(z2 − 3z + 1)(1− z)
− z2

1− 2z
.
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3. Avoidance of a pattern in all cyclic rotations of C(π)

In this section, we will consider when the one-line form of a one-cycle permutation π avoids δk = k(k− 1) . . . 21
and all cycle forms (that is, all cyclic rotations of C(π)) avoid a given pattern τ. As noted in [5, 7, 14], the
case where τ is of length 3 is trivial, and so here, we consider τ ∈ S4. In particular, we consider the case
τ ∈ {1324, 1342}. Up to symmetry, the only remaining case to consider would be τ = 1234, which we leave as
an open question.

In this section, we use A◦n(δk; τ) to denote those one-cycle permutations that avoid δk where all cyclic
rotations of C(π) avoid τ , and we let a◦n,k(τ) = |A◦n(δk; τ)|.

3.1 Enumerating A◦
n(δ

k; 1324) and A◦
n(δ

k; 1423)

In [5,14], the authors find the total number of one-cycle permutations π so that all rotations of C(π) avoid 1342
is equal to F2n−3, the (2n− 3)rd Fibonacci number.

Theorem 3.1. For n ≥ 3, a◦n,3(1324) = 2n−2 and for k ≥ 4, a◦n,k(1324) = F2n−3.

Proof. Let us first notice that if π ∈ A◦n(δk; 1324) then we must have C(π) = (1, c2, . . . , cr−1, 2, cr+1, . . . , cn)
with {c2, . . . , cr−1} = [n − r + 3, n] and {cr+1, . . . , cn} = [3, n − r + 2]. Furthermore, if π1 6= 2, we must have
that the elements after 2 appear in increasing order since otherwise we would have a 1324 pattern in the cycle
form that begins with 2, with 2 acting as the 1 in the pattern and c2 acting as the 4 in the pattern.

Now, if k = 3 we claim that we must have that π1 = 2 or π2 = 1. If not, then we have C(π) =
(1, c2, . . . , cr−1, 2, 3, . . . , n − r + 2) for some r. Then, in π, we have the 321 pattern π1π2πn−r+2 = π131
with π1 > 2. It is also straightforward to see that for any permutation π ∈ A◦n(321; 1324) with C(π) =
(1, 2, c3, . . . , cn), the permutation π′ with C(π′) = (1, c3 − 1, . . . , cn − 1) is in A◦n−1(321; 1324) and in fact any
permutation in A◦n−1(321; 1324) can be obtained this way. Similarly if π satisfies C(π) = (1, c2, . . . , cn−1, 2),
then the permutation π′ with C(π′) = (1, c2 − 1, . . . , cn−1 − 1) is in A◦n−1(321, 1324). Together with the fact
that a◦2(321, 1324) = 1, the result that a◦n,3(1324) = 2n−2 follows.

For the second part of the theorem, it is enough to show that if all cyclic rotations of C(π) avoid the pattern
1324, then π avoids 4321. As noted above, all permutations in A◦n(δk; 1324) must either have the property
that π1 = 2 or C(π) = (1, c2, . . . , cn+1−k, 2, 3, . . . , k) for some k > 2 where the permutation obtained by
deleting [2, k] from C(π) (equivalently, deleting 34 . . . k1 from positions {2, . . . , k} of the one-line form) is also in
A◦n−k+1(δk; 1324). Additionally, if π1 = 2, deleting 2 from the cycle form (equivalently, deleting 2 from the front
of one-line form), leaves you with a permutation in A◦n−1(δk; 1324). Since all the permutations in A◦n(δk; 1324)
are built recursively by adding 2 to the front of the one-line form or 34 . . . k1 after the first position of the
one-line form, it is impossible to introduce a new 4321 pattern to the one-line form, and so all permutations
whose cycle forms avoid 1324 must avoids 4321 in its one-line form.

Finally, by considering the reverse of 1324, which is equivalent to 1423 under cyclic rotation, we have the
following corollary.

Corollary 3.1. For n ≥ 3, a◦n,3(1423) = 2n−2. For k ≥ 4, a◦n,k(1423) = F2n−3.

3.2 Enumerating A◦
n(δ

k; 1342)

In this final section, we consider the case where τ = 1342. In [5, 14], the authors find the the total number of
one-cycle permutations π so that all rotations of C(π) avoid 1342 is equal to 2n−1 − n+ 1.

Theorem 3.2. If f◦k (z; 1342) =
∑

n≥0 a
◦
n,k(1342)zn, then f◦1 (1342) = f◦2 (1342) = 1 + z, and for k ≥ 3,

f◦k (z; 1342) =
1− 3z + 2z2 + z3

(1− z)2(1− 2z)
− 2zk+1

(1− z)k−1(1− 2z)
.

Let us first address the case when k = 3, and then we will find a recurrence for the cases when k ≥ 4.

Lemma 3.1. For n ≥ 3, a◦n,k(1342) = n− 1.

Proof. First, note that if C(π) = (1, c2, . . . , ck−1, n, ck+1, . . . , cn), then since C(π) avoids 1342, we must have
that {c2, . . . , ck−1} = [2, k − 1] and {ck+1, . . . , cn} = [k, n − 1]. That means π = π1π2 . . . πn satisfies that
{π1, . . . , πk−1} = [2, k−1]∪{n} and {πk, . . . , πn} = {1}∪[k, n−1]. Since π avoids 321, we must have that πk−1 =
n and πk = 1 or else either nπk−11 or nπk1 would be a 321 pattern. However, this implies that the elements
appearing before 1 and those appearing after n must be increasing, so π = 23 . . . (k − 1)n1k(k + 1) . . . (n− 1).
Since all cyclic rotations of the cycle form C(π) = (1, 2, . . . , k − 1, n, n − 1, . . . , k + 1, k) avoid 1342, there are
n− 1 permutations in A◦n(δk; 1342).
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In order to avoid δk for k ≥ 4, we will establish a recurrence. As before, B◦n(δk; 1342) are those permutations
in A◦n(δk; 1342) with π1 = n and b◦n,k(1342) = |B◦n(δk; 1342)|.

Lemma 3.2. For n ≥ 3 and k ≥ 4, the number of permutations in A◦n(δk; 1342) with π1 = n− 1 and πn = 1 is
equal to b◦n−1,k−1(1342).

Proof. Given A◦n(δk; 1342) with π1 = n − 1, πn = 1, and πj = n, let π′ ∈ Sn is defined by letting π′j = 1 and
π′i = πi for i ∈ [n−1]\{j}. This corresponds to deleting n from the cycle form of π to obtain π′. We claim that
the permutation π′ ∈ B◦n−1(δk−1; 1342) and that all such permutations in B◦n−1(δk−1; 1342) can be obtained
this way.

First notice that if there is a δk−1 pattern in π′, that pattern together with the 1 at the end of π would be
a δk pattern in π. Conversely, a δk pattern in π, then there is one that does not use n as the k in the k . . . 21
pattern (since we can use π1 = n− 1 instead). By taking the first k − 1 elements of that pattern (which must
not contain πn = 1) we would have a δk−1 pattern in π′.

Finally, since adding or removing the n at the end (which is cyclically adjacent to 1, n − 1), we cannot
introduce a new 1342 pattern to any cyclic rotation of the cycle forms of the permutations and so the result
follows.

Lemma 3.3. For n ≥ 5 and k ≥ 4, we have

a◦n,k(1342) = a◦n−1,k(1342) + b◦n,k(1342) +

n−1∑
r=3

b◦r,k−1(1342).

Proof. Let π ∈ A◦n(δk; 1342). Note that if π1 = 2, one can delete the 2 from both the cycle form and one-line
form of the permutation and get a new permutation in π ∈ A◦n−1(δk; 1342) and that this process is invertible
since that 2 cannot be part of a δk pattern in π and cannot add a 1342 pattern in any cyclic rotation of C(π).
Also, by definition there are b◦n,k(1342) permutations with π1 = n.

Assume that 3 ≤ π1 ≤ n − 1, and let r = π1. Then we claim that the permutation must be of the form
(1, r, c3, . . . , cr, n, n−1, . . . , r+1). Indeed, since π avoids 1342, all elements after n must be larger than elements
before n. Furthermore, if there were some element cm < cm+1 with m > r, then c3cmcm+1r would be a 1342
pattern in a cyclic rotation of C(π). Therefore, in one-line form, π is of the form π = rπ2 . . . πr1(r + 1)(r +
2) . . . (n− 1). Any δk pattern in π does not include any element of the increasing segment (r+ 1)(r+ 2) . . . (n−
1) since n is the only element larger than those appearing before them. For this reason, the permutation
obtained by deleting these elements (from both the one-line and cycle form of the permutation) is of the form
(1, r, c3, . . . , cr, r+ 1) and still avoids δk, and that all such cycles can be formed this way. Thus, by Lemma 3.2,
there are b◦r,k−1 such permutations with π1 = r.

Lemma 3.4. For n ≥ 1, we have b◦n,3(1342) = 1. For n ≥ 4 and k ≥ 4, we have

b◦n,k(1342) = b◦n−1,k(1342) + b◦n−1,k−1(1342).

As a result we have the generating function Bk(z; 1342) =
∑

n≥1 b
◦
n,k(1342)zn

Bk(z; 1342) =
z(1− z − z2)

1− 2z
− zk+1

(1− 2z)(1− z)k−2
.

Proof. We first claim that if π ∈ B◦n(δk; 1342), then we must have πn ∈ {2, n − 1}. If not, then we would have
C(π) = (1, n, j, c4, . . . , cn) for some 3 ≤ j ≤ n−2. Notice that if 2 appears after n−1 in C(π), then 1j(n−1)2 is
a 1342 pattern, and if 2 appears before n−1, then 2(n−1)nj is a 1342 pattern in a cyclic rotation of C(π). Since
this is a contradiction, we must have πn ∈ {2, n − 1}. If πn = 2, then by complementing C(π) (corresponding
to the reverse complement of π), we have a permutation πrc ∈ A◦n(δk; 1342) with the property that π1 = n− 1
and πn = 1. By Lemma 3.2, there are b◦n−1,k−1(1342) such permutations. If πn = n − 1, we can delete n − 1
from the cycle form (and equivalently from the one-line form) to obtain a permutation in B◦n(δk; 1342). Since
this process is invertible, there are b◦n−1,k(1342) permutations with πn = n− 1.

Finally, since the generating function in the statement of the theorem satisfies

Bk(z; 1342) = zBk(z; 1342) + zBk−1(z; 1342) + z − z2 − z3,

the theorem follows.

Proof of Theorem 3.2. The generating function f◦k (z; 1342) in the statement of the theorem follows from the
recurrence in Lemma 3.3 and the generating function in Lemma 3.4.
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4. Open Questions

In Section 2, we enumerate one-cycle permutations that avoid the decreasing pattern δk = k(k − 1) . . . 21
and whose cycle form C(π) avoids a pattern τ of length 3, with the exception of τ = 321, which remains an
open question. Similarly, in Section 3, we enumerate one-cycle permutations that avoid the decreasing pattern
δk = k(k − 1) . . . 21 such that every cyclic rotation of its cycle form avoids a pattern τ of length 4, with the
exception of τ = 1432, which also remains open.

There are many other interesting sequences that seem to appear when considering pattern-avoiding one-
cycle permutations where the cycle form (or all cyclic rotations of the cycle form) also avoids a pattern or
set of patterns. For example, we conjecture that |A◦n(4123; 1324)| is the (n − 2)nd Tetranacci number, that
|A◦n(2431; 1324)| is the (n−1)st Pell number, and |A◦n(4132; 1324)| is the (3n)th Padovan number. Several other
pairs of patterns (or sets of patterns) seem to give interesting sequences that appear in the Online Encyclopedia
of Integer Sequences, which makes these open questions seem quite accessible to future researchers.

Finally, one could also consider pattern avoidance in other “cyclic” combinatorial objects, such as parking
functions [10] or tensor words [9].
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[6] A. Claesson and H. Úlfarsson, Turning cycle restrictions into mesh patterns via Foata’s fundamental trans-
formation, Discrete Math. 347(3) (2024), 113826.

[7] R. Domagalski, S. Elizalde, J. Liang, Q. Minnich, B. Sagan, J. Schmidt, A. Sietsema, Cyclic pattern
containment and avoidance, Adv. Appl. Math. 135 (2022), 102320.

[8] S. Elizalde, The X-class and almost-increasing permutations, Ann. Comb. 15 (2011), 51–68.

[9] S. Fried and T. Mansour, The total number of descents and levels in tensor words and cyclic tensor words,
Discrete Math. Lett. 13 (2024), 44–49.

[10] Y. Kang, T. Selig, G. Yang, Y. Zhang, and H. Zhu, On friendship and cyclic parking functions, Enumer.
Combin. Appl. 4:3 (2024), Article S2R21.

[11] R. Li, Vincular pattern avoidance on cyclic permutations, Enumer. Combin. Appl. 2:4 (2022), Article
S4PP3.

[12] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2019. Available at https://oeis.
org.

[13] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin. 6 (1985), 383–406.

[14] A. Vella, Pattern avoidance in permutations: linear and cyclic orders, Electron. J. Combin. 10 (2003),
#R18.

[15] A. Woo, The shallow permutations are the unlinked permutations, arXiv:2201.12949, 2022.

ECA 5:1 (2025) Article #S2R3 14


