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Abstract: To a given permutation or set partition there is a natural way to assign a genus. Counting all
permutations or partitions of a fixed genus according to cycle lengths or block sizes, respectively, is the main
content of this article. After a variable transformation, the generating series are rational functions with poles
located at the ramification points in the new variable. The generating series for any genus is given explicitly
for permutations and up to genus 2 for set partitions. Extending the topological structure not just by the
genus but also by adding more boundaries, we derive the generating series of non-crossing partitions on the
cylinder from known results of non-crossing permutations on the cylinder. Most, but not all, outcomes of this
article are special cases of already known results, however, they are not presented in this way in the literature,
which however seems to be the canonical way. To make the article as accessible as possible, we avoid going into
details into the explicit connections to Topological Recursion and Free Probability Theory, where the original
motivation came from.
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1. Introduction

Permutations and set partitions are very important objects in mathematics and appear in almost all areas. The
number of permutations is given by factorials and the number of partitions by Bell numbers. The ordinary
generating series of factorials or Bell numbers only exists as a formal power series, i.e. it has a vanishing radius
of convergence.

One can associate with any permutation or partition a so-called genus, which is a positive integer bounded
by the number of elements. Collecting permutations or partitions of a fixed genus according to the lengths of the
cycles of the permutations or according to the sizes of the blocks of the partitions is the subject of this article.
For each genus, the generating series has a nonvanishing radius of convergence. Resumming the non-convergent
genus-series is a nontrivial task that is related to Borel resummation or resurgence, but will not be addressed
here.

For the special case of genus 0, the so-called non-crossing permutations and non-crossing partitions coincide
and are counted by Catalan numbers. For higher genus and after a variable transformation, the generating
series of genus permutations are rational functions with poles just located at the ramification points in the
new variable. Theorem 3.1 gives an explicit formula for all genus permutations encoded by integer partitions.
The formula of Theorem 3.1 is to our knowledge new and follows from the work of [2] as a primary example.
Generalisations in several directions are discussed as well.

For genus partitions, much less is known. Considering the same variable transformation for genus partitions,
the generating series up to genus 2 is given explicitly (based on the work [34]). We find that it also has poles just
located at the ramification points in the new variable. Using this rationality, we prove some minor conjectures
about genus partitions made in [17]. Comparing further permutations and partitions in a more general setting,
we provide an explicit formula for non-crossing partitions on the cylinder, which is deduced from the known
result of non-crossing permutations on the cylinder.

The subject of this article is closely related to the theory of Topological Recursion [18] and the theory of
Free Probability [31] and the recently revealed connection between them. We will mention this connection in
some remarks throughout the article, but refer the reader to the provided references.
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2. Preliminaries

Taking the set {1, ..., n}, a permutation is a bijection from this set to itself, a rearrangement of {1, ..., n}. The
set of all permutations on {1, ..., n} form a group which is called the symmetric group Sn, which has n! elements,
i.e. there are n! permutations of {1, ..., n}. A permutation can be decomposed into disjoint cycles, which are
the different orbits of the elements x ∈ {1, ..., n} under the action of the permutation σ ∈ Sn. We will call a
cycle of length i a i-cycle.

The number of permutations of {1, ..., n} with k cycles is given by the Stirling numbers of the first kind
s(n, k) (up the a global sign (−1)n−k). The definition is given by the coefficient of the falling factorials

n∑
k=0

s(n, k)xk = x(x− 1)...(x− n+ 1).

Let us refine this a bit further. Let [a] ` n denote a partition of the integer n, i.e. [a] = (a1, a2, ..., ak) with∑
i ai = n, ai > 0 and ai ≤ ai+1. Then, the number of permutations of {1, ..., n} with cycle type [a] ` n is given

by

Dn,[a] =
n!

sym(a)
∏
i ai

, (1)

where sym(a) =
∏n
j=1 kj ! and kj is the number of all al = j in the integer partition [a] ` n. The Stirling

numbers of the first kind or the factorials are computed from Dn,[a] via

(−1)n−ks(n, k) =
∑
[a]`n
|[a]|=k

Dn,[a], n! =
∑
[a]`n

Dn,[a].

Now let κi be indeterminates, we can define the following moment

αn =
∑
[a]`n

Dn,[a]

∏
i

κai ,

which associates κi to a cycle of length i and sums over all integer partitions [a] ` n. One should think of the
κi’s as cumulants, which justifies the name of a moment for αn. More canonically, we define the generating
series X(y) of κi and the generating series of permutations Wper(x)

X(y) =
1

y
+

∞∑
i=1

κiy
i−1,

Wper(x) =
1

x
+
∑
n=1

αn
xn+1

=
1

x
+
∑
n=1

∑
[a]`nDn,[a]

∏
i κai

xn+1
(2)

and ask what is the relation between the two generating series X(y) and Wper(x).
We should keep three important examples in mind that give access to counting permutations of different

specific types:

Factorials aka all permutations:

κi = 1, X(y) =
1

y
+

1

1− y
, Wper(x) =

∞∑
n=0

n!

xn+1

Stirling numbers of the 1st kind aka permutations with k cycles:

κi = κ, X(y) =
1

y
+

κ

1− y
, Wper(x) =

∞∑
n=0

∑n
k=0(−1)n−ks(n, k)κk

xn+1

Harer-Zagier aka permutations with only 2-cycles:

κi = δi,2, X(y) =
1

y
+ y, Wper(x) =

∞∑
n=0

(2n− 1)!!

x2n+1
.

The last example is called Harer-Zagier due to its relation to the Euler characteristic of the moduli space of
curves [24]. The detailed connection will be apparent later.

For arbitrary choices of κi, it is obvious that Wper(x) can just be understood as a formal power series in 1
x ,

which does not converge in general.
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Let us now turn to partitions. Taking the set {1, ..., n}, a set partition is a set of non-empty subsets (blocks)
of {1, ..., n}, where each element is in exactly in one of these subsets. Let P (n) be the set of all set partitions
of {1, ..., n}. We will write a partition as λ = {λ1, ..., λl}, where the λi’s are the blocks with tiλi = {1, ..., n}
and l is the number of blocks. The number of partitions of n elements is given by the Bell number Bn, which
satisfies

Bn+1 =

n∑
k=0

(
n

k

)
Bk, B0 = 1.

The number of set partitions of {1, ..., n} according to the number of blocks is given by the Stirling numbers of
the second kind S(n, k), where k is the number of blocks. The definition involves also falling factorials

n∑
k=0

S(n, k)x(x− 1)...(x− k + 1) = xn.

Stirling numbers of the first kind and Stirling numbers of the second kind interpreted as matrices are inverse of
one another ∑

q

S(n, q)s(q, k) =
∑
q

s(n, q)S(q, k) = δn,k,

with S(n, k) = s(n, k) = 0 if n < k. Let us refine the enumeration of set partitions a bit further as above for
the permutations. Let [a] = (a1, a2, ..., ak) ` n be again an integer partition of the integer n. Then, the number
of partitions of {1, ..., n} with blocks of size [a] ` n is

Cn,[a] =
n!

sym(a)
∏
i ai!

,

where sym(a) is the same symmetry factor as before in (1).
Forgetting the cyclic order of the cycles of a permutation and considering these as blocks, one obtains a

partition from a permutation. In other words, taking permutations modulo the cyclic order, these equivalence
classes are given by partitions.

Stirling numbers of the second kind and Bell numbers are computed from Cn,[a] via

S(n, k) =
∑
[a]`n
|[a]|=k

Cn,[a], Bn =
∑
[a]`n

Cn,[a].

Now let κi be indeterminates, we can define the following moments

mn =
∑
[a]`n

Cn,[a]
∏
i

κai ,

which associates κi to a block of length i and sums over all integer partitions [a] ` n. In probability theory or
statistical mechanics, the κi’s are called cumulants or the connected parts of the moment mn.

Let X(y) be again the generating series of κi as above in (2), then define the generating series of partitions
Wpar(x) by

Wpar(x) =
1

x
+
∑
n=1

mn

xn+1
=

1

x
+
∑
n=1

∑
[a]`n Cn,[a]

∏
i κai

xn+1
.

Again, one might be interested in the relation between X(y) and Wpar(x).
We list again three examples:

Bell numbers aka all partitions:

κi = 1, X(y) =
1

y
+

1

1− y
, Wpar(x) =

∞∑
n=0

Bn
xn+1

Stirling numbers of the 2st kind aka partitions with k blocks:

κi = κ, X(y) =
1

y
+

κ

1− y
, Wpar(x) =

∞∑
n=0

∑n
k=0 S(n, k)κk

xn+1

Harer-Zagier aka partitions with only blocks of size 2:
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κi = δi,2, X(y) =
1

y
+ y, Wpar(x) =

∞∑
n=0

(2n− 1)!!

x2n+1
= Wper(x).

For the Harer-Zagier case, the partitions and permutations coincide since we are just allowing cycles of lengths
2 for the permutations, which are in one-to-one correspondence to the blocks of the set partition. Note that the
generating series of the set partitions Wpar(x) is a formal power series in 1

x , which does not converge in general.
From the generating series Wper(x) and Wpar(x) defined above, the coefficients are computed via

αn =− Resx→∞Wper(x)xndx,

mn =− Resx→∞Wpar(x)xndx.

2.1 Genus expansion of permutations and partitions

Modify the counting problem by decomposing permutations and partitions with respect to their genus was
considered for example in [10, 11, 33, 34], see also [13, 19] for permutations. There is a canonical way to assign
a genus to a given permutation and a given partition. This means graphically that a permutation or partition
can be drawn on a Riemann surface of genus g with one boundary and n points in consecutive order on the
boundary. A permutation connects the points on the boundary described by the cycle type respecting the
orientation. The genus of a permutation is then the minimal topological genus of the Riemann surface such
that all drawn cycles within the Riemann surface do not cross, see Figure 1. Similarly, a partition connects

1

1

2

2

3

3

(1, 2, 3)
(1, 3, 2)

Figure 1: Two permutations σ1, σ2 ∈ S3 with σ1 = (1, 2, 3) and σ2 = (1, 3, 2) are drawn together with its
embedding on the corresponding Riemann surface. The permutation σ1 is of genus g = 0 and the permutation
σ2 of genus g = 1. The orientation indicated by the arrows matters and the enclosed area is to the right of the
orientation.

the points on the boundary described by the blocks (no orientation). The genus of a partition is the minimal
topological genus of the Riemann surface such that all blocks within the Riemann surface are non-crossing, see
Fig. 2.

More formally, the genus g(σ) of a permutation σ ∈ Sn is defined via [10,25]

2g(σ) = n+ 1− l(σ)− l(σ−1ζn), (3)

where l(σ′) for σ′ ∈ Sn is the number of disjoint cycles of σ′. Further, ζn ∈ Sn is the circular permutation
ζn(i) = i+ 1 modulo n and σ−1ζn is the composition of σ−1 with ζn.

The genus of a partition λ ∈ P (n) is defined with the same formula by considering the partition λ as a
permutation σ ∈ Sn, where the blocks of λ are turned into cycles of σ with the order of the cycles constructed
as increasing lists of integers.

We expand the generating series of permutations and partitions with respect to the genus

Wper(x) =

∞∑
g=0

W (g)
per(x)

Wpar(x) =

∞∑
g=0

W (g)
par(x),

ECA 5:1 (2025) Article #S2R5 4
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1

1

2

2
3

3

4

((1, 2), (3, 4)) ((1, 3), (2, 4))

4

Figure 2: Two partitions λ, λ′ ∈ P (4) with λ = {(1, 2), (3, 4)} and λ′ = {(1, 3), (2, 4)} are drawn together with
their embedding on the corresponding Riemann surfaces. The partition λ is of genus g = 0 and the partition λ′

of genus g = 1. There is no orientation, the blocks of λ, λ′ are sets.

where W
(g)
per(x) and W

(g)
par(x) are the generating series of permutations or partitions of genus g, respectively.

Extending this notation to the coefficients, we define

W (g)
per(x) =

δg,0
x

+
∑
n=1

α
(g)
n

xn+1
, α(g)

n =
∑
[a]`n

D
(g)
n,[a]

∏
i

κai

W (g)
par(x) =

δg,0
x

+
∑
n=1

m
(g)
n

xn+1
, m(g)

n =
∑
[a]`n

C
(g)
n,[a]

∏
i

κai ,

where D
(g)
n,[a] counts the genus g permutations of type [a] ` n and C

(g)
n,[a] counts the genus g partitions of type

[a] ` n.
It is very common to add a further formal parameter ~ separating the different genera

Wper(x) =

∞∑
g=0

~2g−1W (g)
per(x)

Wpar(x) =

∞∑
g=0

~2g−1W (g)
par(x),

with equality Wper|~=1 = Wper and Wpar|~=1 = Wpar at the level of formal expressions.

For any genus and any particular choice of κi, the genus generating functions W
(g)
per(x) and W

(g)
per(x) do

converge. The convergent radius depends on the κi and is independent of the genus, as a direct corollary of
Theorem 3.1∗. More interestingly, evaluating the genus generating functions at X(y) which was defined in (2),
one obtains a rational function in y, i.e.

W (g)
per(X(y)), W (g)

par(X(y))

are rational in y. We provide for any genus g the explicit formula of the generating function for permutations

W
(g)
per(X(y)) in terms of derivatives of X(y). The results are special cases of recent developments in the theory

of Free Probability [2] and its relation to the theory of Topological Recursion [18].

Example 2.1. For the Harer-Zagier example X(y) = 1
y + y, the coefficients α

(g)
n = m

(g)
n coincide with the

coefficients εg(n) in [24], which gives us a way to compute the virtual Euler characteristic of the moduli space
of complex curves, see also [28] for a comprehensible exposition.

The generating series of partitions up to genus g = 2 was derived in [34]. We rewrite the formulae in our
notation and prove some conjectures stated in [17] via residue computations. More precisely, the coefficients

α
(g)
n and m

(g)
n can be computed easily from the rational functions W

(g)
per(X(y)) and W

(g)
par(X(y)) respectively via

the residue formula

α(g)
n =− Resy→0W

(g)
per(X(y))X(y)nX ′(y)dy (4)

∗We are unsure if this has already been stated in the combinatorics literature.

ECA 5:1 (2025) Article #S2R5 5



Alexander Hock

m(g)
n =− Resy→0W

(g)
par(X(y))X(y)nX ′(y)dy, (5)

where X(y) was defined in (2).

Remark 2.1. The concept of genus permutations used in this article is equivalent to that of the so-called
unicellular maps, which are extensively studied in the combinatorics literature, see for example [9, 12].

Remark 2.2. The background of this article concerning the recent developments in the theory of Free Probability
and its connection to the x− y symplectic transformation within the theory of Topological Recursion is beyond
the scope of this article. We refer the curious reader to the growing literature [1–6,20,22] and references therein.

The explicit formula for W
(g)
per(X(y)) of Sec. 3 is a prime example which did not appear yet (to our knowledge)

in the literature.

2.2 Planar Permutations and Partitions

The genus g = 0 permutations or partitions which are also called non-crossing permutations or non-crossing
partitions appeared first in [26]. They reappeared in different contexts coming from physics [7, 16] or operator
algebras [31]. The work of Voiculescu gave rise to the theory of Free Probability.

At genus g = 0, permutations and partitions coincide W
(0)
per(x) = W

(0)
par(x), this is a well-known fact and

reproved in the literature at several places [15,29]. Using Lagrange inversion formula (see for instance [7]), it is

easy to prove that W
(0)
per(x) is the formal inverse of X(y), i.e.

W (0)
per(X(y)) = y, X(W (0)

per(x)) = x.

The special case of κi = 1, i.e. X(y) = 1
y(1−y) , leads to Catalan numbers.

3. Genus Permutations

3.1 Closed Formula for the Generating Function of Permutations at all Genera

Genus permutations were considered recently in a much broader sense than described here in the article [2]. The
motivation coming from Free Probability [14,31] was to give a general formula between the so-called higher-order
free cumulants and higher order moments, see also Remark 2.2. The current article presents explicit formulae
for a special case considered in [2]. We will not include higher order free cumulants, i.e. we put all κi1,i2,...,in = 0
for n ≥ 2 appearing in that article. These κi1,i2,...,in carry by themselves topological structure, which means
that our example is reduced to disc-like cycles for permutations, which are exactly the ones described above.

For this setting, we have the following explicit expression for all W
(g)
per(X(y)):

Theorem 3.1. For any X(y) = 1
y +

∑
i≥1 κiy

i−1, the generating function of permutations of genus g, where
i-cycles are weighted by κi, is given by

W (g)
per(X(y)) =

g∑
l=1

∑
[a]`g

[a]=(a1,...,al)

(
− 1

X ′(y)

∂

∂y

)2g+l−1

(
− 1

X′(y)

∏l
i=1

X(2ai)(y)
22ai (2ai+1)!

)
sym(a)

,

where sym(a) is the symmetry factor appearing in (1), and X(n)(y) = ∂nX(y)
∂yn .

Equivalently, as a formal expansion in ~, the following formula holds for Wper(x) =
∑∞
g=0 ~2g−1W

(g)
per(x):

Wper(X(y)) =
∑
m≥0

(
− 1

X ′(y)

∂

∂y

)m(
− 1

X ′(y)

)
[um]

exp

( ∫ y+~u/2
y−~u/2 X(y′)dy′

~ −X(y)u

)
~u

, (6)

where [um] extracts the m-th coefficient of a power series in u, e.g. for f(u) =
∑∞
n=0 anu

n it is [um]f(u) = am.

Proof. The definition of the genus (3) is a special case of the definition used in [2, Def. 4.4] restricted to one
boundary. Therefore, the functional relation [2, Thm. 3.4] applies. This functional relation was simplified
in [20] and yields for n = 1 and unramified y (which is the case considered in this article)

W (g)
per(X(y)) = [~2g−1]

∑
m≥0

(
− 1

X ′(y)

∂

∂y

)m(
− 1

X ′(y)

)
[um]

exp

(
Φ̂∨1 (y; ~, u)−X(y)u

)
~u

,

ECA 5:1 (2025) Article #S2R5 6
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where

Φ̂∨1 (y; ~, u) :=
1

~

(
Φ(y +

~u
2

)− Φ(y − ~u
2

)

)
,

Φ(y) =

∫ y

o

X(y′)dy′.

This gives us the formula for Wper(x).
The explicit structure of the coefficients in this formula at each order in ~2g−1 was analysed in [20, §2.4],

where we have to consider just the special case of one ◦-vertex (corresponding to n = 1) and just 1-valent
•-vertices with weight 0 (due to the fact that y is unramified in the sense of [20]), but arbitrary edge weights.

The coefficients are literally the coefficients of S(t) = et/2−e−t/2
t =

∑∞
k=0

t2k

22k(2k+1)!
= 1 + t2

24 + t4

1920 + t6

322560 + ...

Expanding the exponential, the coefficients of the formal expansion in u and ~ are not independent. The
leading term in ~ of the argument of the exponential is ~1. Expanding the exponential to a fixed order in ~2g−1,
the series truncates at 2g − 1. Finally after collecting symmetry factors, it breaks down to a sum of integer
partitions of g, i.e. [a] ` g with [a] = (a1, ..., al) where ai ∈ N>0 with

∑l
i=1 ai = g and l the length of the integer

partition [a].

This explicit functional relation for genus permutations did not appear in the literature to our knowledge.
There is some work on genus permutations [9, 13, 19], but it does not address generating series or functional
relations. In some original works for genus zero [7, 16, 26], the result was achieved through inverse function
theory. The functional relation of Theorem 3.1 is the natural generalization to genus zero in the spirit of these
works.

Example 3.1. The functions W
(g)
per for g ≤ 3 are as follows:

W (0)
per(X(y)) =y,

W (1)
per(X(y)) =−

(
1

X ′(y)

∂

∂y

)2(
1

X ′(y)

X ′′(y)

24

)
,

W (2)
per(X(y)) =

(
1

X ′(y)

∂

∂y

)5(
1

X ′(y)

(X ′′(y))2

242 · 2

)
−
(

1

X ′(y)

∂

∂y

)4(
1

X ′(y)

X(4)(y)

1920

)
,

W (3)
per(X(y)) =−

(
1

X ′(y)

∂

∂y

)8(
1

X ′(y)

(X ′′(y))3

243 · 3!

)
+

(
1

X ′(y)

∂

∂y

)7(
1

X ′(y)

X(4)(y)X(2)(y)

1920 · 24

)
−
(

1

X ′(y)

∂

∂y

)6(
1

X ′(y)

X(6)(y)

322560

)
.

Example 3.2. Taking the Example 3.1, it is very easy to compute with the formula (4) the coefficients α
(g)
n for

general κi’s. We get for instance:

α
(1)
3 =κ3

α
(1)
4 =4κ3κ1 + κ22 + 5κ4

α
(1)
5 =10κ21κ3 + 5κ1κ

2
2 + 25κ1κ4 + 15κ2κ3 + 15κ5

α
(1)
6 =20κ31κ3 + 15κ21κ

2
2 + 75κ21κ4 + 90κ1κ2κ3 + 10κ32 + 90κ1κ5 + 60κ2κ4 + 25κ23 + 35κ6

α
(2)
5 =8κ5

α
(2)
6 =48κ5κ1 + 24κ2κ4 + 12κ23 + 84κ6

α
(2)
7 =168κ21κ5 + 168κ1κ2κ4 + 84κ1κ

2
3 + 49κ22κ3 + 588κ1κ6 + 322κ2κ5 + 273κ3κ4 + 469κ7

α
(3)
7 =180κ7

α
(3)
8 =1440κ1κ7 + 720κ2κ6 + 608κ3κ5 + 276κ24 + 3044κ8

For any g > 0, the function W
(g)
per(X(y)) is a rational function in y with poles just located at the ramification

points of X(y), i.e. {y ∈ C|X ′(y) = 0}. This can be proved easily from the Theorem. The leading pole for

W
(g)
per(X(y)) is of order 6g − 1, which is generated if [a] ` g is [a] = (1, ..., 1︸ ︷︷ ︸

g

) and all derivatives 1
X′(y)

∂
∂y act on

1
X′(y) . As an expansion about x =∞, W

(g)
per(x) = O( 1

x2g+1 ).
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Note that W
(g)
per(x) makes sense as a formal expansion at x = ∞, whereas W

(g)
per(X(y)) is an analytic con-

tinuation defined for y in the complex plane. Constructing the inverse of X(y) is only locally possible. This

prevents us from writing down explicit formulae for W
(g)
per(x) in general.

If X(y) is a ramified covering of degree two, the inverse can be written explicitly. Choosing the correct branch

it is possible to write down explicit formulae for W
(g)
per(x). This type of example is considered in Appendix A

by specifying κi.

3.2 Laplace transform

The formal Laplace transform is a very natural operation on the formula (6) of Theorem 3.1. In a more general
setting, the Laplace transform was already considered in [21] deriving new formulae for intersection numbers on
the moduli space of complex curves. We will recap the few computational steps due to the important insight
they are bringing. We are not precise about the integration contour which should be chosen in the complex
plane in order that the integral converges (see op. cit. for details):

Theorem 3.2 ( [21]). The formal Laplace transform of Wper(x) =
∑∞
g=0 ~2g−1W

(g)
per(x) is given by∫

dxe−xµWper(x) =

∫
dy

~µ

(
y − ~µ

2

y + ~µ
2

)1/~
exp

(∑
i≥1

κi
i [(y − ~µ

2 )i − (y + ~µ
2 )i]

~

)
. (7)

Proof. Assume that the integration contour is such that all boundary terms vanish under integration by parts,
and all coefficients of the formal ~-expansion converge. We compute directly the formal Laplace transform of
(6) with x = X(y)∫

dX(y)e−X(y)µWper(X(y))

=

∫
dX(y)e−X(y)µ

∑
m≥0

(
− ∂

∂X(y)

)m(
− dy

dX(y)

)
[um]

exp

( ∫ y+~u/2
y−~u/2 X(y′)dy′

~ −X(y)u

)
~u

=

∫
dX(y)e−X(y)µ

∑
m≥0

(−µ)m
(
− dy

dX(y)

)
[um]

exp

( ∫ y+~u/2
y−~u/2 X(y′)dy′

~ −X(y)u

)
~u

=

∫
dX(y)e−X(y)µ

(
− dy

dX(y)

)exp

( ∫ y−~µ/2
y−~u/2 X(y′)dy′

~ +X(y)µ

)
−~µ

=

∫
dy

~µ
exp

(∫ y−~µ/2
y−~u/2 X(y′)dy′

~

)
,

which is equivalent to the claimed result. The following computational steps are performed

• Inserting (6)

• Integrating by parts m times for each summand in the m-summation

• Using for a formal expression P (µ) =
∑
m µ

m[um]P (u)

• Change of variables and cancellation of the Laplace kernel

• Integrating X(y) = 1
y +

∑
i≥1 κiy

i−1 in the exponential.

The important insight is that the formal Laplace transform seems to be the canonical object to look at. For
the RHS of (7), the integrand is understood to be formally expanded in ~ before carrying out the integration.

3.3 Generalisations

There are two types of generalisations that can be made. Both are included in the more general theory of
partitioned permutations [14] and/or surfaced permutations considered and understood in general in [2], see
also [27]. We introduce them by

• Allowing the Riemann surface to have more than one boundary
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• Allowing permutations to carry additional topological structure.

If we have b boundaries, we associate to the set {1, ..., n} a permutation τ ∈ Sn encoding the structure of the
boundary in the sense that τ has b cycles, each associated to a boundary component. Then, there is a second
permutation σ ∈ Sn on the same set such that the boundaries encoded by τ are connected through σ, see Fig.3.
One can associate a genus to the pair (τ, σ) via (see for instance [10,25,28])

2g(σ, τ) = n+ 2− b− l(σ)− l(σ−1τ), (8)

where l(σ), b = l(τ) are the number of disjoint cycles of σ, τ ∈ Sn, respectively.
The second generalisation includes partitioned permutations in the sense of [14,30]. Permutations themselves

can carry a topological structure. The right figure of Fig. 3 shows an example of a partitioned permutation
having the additional topological structure of a cylinder connecting (2′, 1, 2) in a topologically nontrivial way.
We will just review the cylinder case (understood in [14] and we refer to this reference for further details).

1’ 2’ 3’

1
234

5

1’ 2’

123
4

Figure 3: On the left, we have the boundary permutation τ ∈ S8 and the permutation σ ∈ S8 of genus g = 0 of
the form τ = ((1, 2, 3, 4, 5), (1′, 2′, 3′)) and σ = ((1, 3′), (2, 3, 5, 1′, 2′), (4)) with the weight κ1κ2κ5. On the right,
we have a partitioned permutation, where the associated weight is of the form κ1κ2κ1,2, where κ1 comes from
the cycle (1′), κ2 from (3, 4) and κ1,2 from (2′), (1, 2) connected non-trivially.

Associate a weight of the form κi,j to a topologically non-trivial cycle related to a second-order free cumulant.
Let the generating series of κi,j be

X(y1, y2) =
∑
i,j≥1

κi,jy
i−1
1 yj−12 ,

then the generating function of W
(0)
perm,2(x1, x2) =

∑
i,j≥1

α
(0)
i,j

xi+1
1 xj+1

2

of permutations on the cylinder including

second order free cumulants is given via [14, Theorem 6.3]†

W
(0)
perm,2(X(y1), X(y2)) =

X(y1, y2) + 1
(y1−y2)2

X ′(y1)X ′(y2)
− 1

(X(y1)−X(y2))2
. (9)

We mention this result here to use it later to derive a new result for the cylinder moments of non-crossing

partitions in Sec. 4.2. The first explicit coefficients α
(0)
i,j are listed in [30, p. 150].

Remark 3.1. The important result of [2] is a tremendous generalisation including higher genus and higher-order

cumulants of the form κ
(g)
n1,...,nb and relate them to the moments

α(g)
n1,...,nb

.

Collecting these in a generating series of the form

W
(g)
per,b(x1, ..., xb) =

δg,0δb,1δn1,1

x
+

∑
n1,...,nb≥1

α
(g)
n1,...,nb

xn1+1
1 ...xnb+1

b

,

†the relation between the different generating series between this article and [14] is as follows: C(x) → X(y)
y

,M(x) →

W
(0)
perm( 1

x
)

x
, C(x, y) → X(y1,y2)

y1y2
and M(x, y) →

W
(0)
perm,2(

1
x1

, 1
x2

)

x1x2
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the explicit relation to the generating series of the κ
(g)
n1,...,nb is known, which is formulated in [2, Theorem 1.1]

and simplified in [20], but it is beyond the scope of the present article. Furthermore, the formulae presented in
Thm 3.1 are further simplifications and specialisations in the special case of one boundary and unramified y.

Remark 3.2. This remark makes the connection with the theory of Topological Recursion [18]. Taking the
spectral curve as defined in [18] to be (P1, x = 1

z +
∑
i≥1 κiz

i−1, y = z, dz1dz2
(z1−z2)2 ), then all ωg,n generated by

the algorithm of Topological Recursion are essentially W
(g)
per,b, where all cumulants κ

(g)
n1,...,nb = 0 except the κi’s.

Using the formula of Topological Recursion to compute W
(g)
per(x) seems impossible since the branched covering

x has an arbitrary high degree. However, the recent insight [1, 2, 20] of x − y symplectic transformation for
Topological Recursion provides the compact result of Theorem 3.1 and gives furthermore a formula for all other

W
(g)
per,b with b > 1, see for the worked-out example with unramified y [23, Cor. 2.6 & Prop. 2.7].

4. Genus Partitions

Counting genus partitions with respect to the sizes of the blocks turns out to be completely different. The idea
of forgetting the cyclic structure of a permutation to get a partition has topologically nontrivial consequences.
For genus g = 0, the numbers of permutations and partitions are equal (see Sec. 2.2) since every cycle has a
unique increasing ordering. This changes drastically at higher genus and including more boundaries. Genus
partitions were considered for instance in [10,11,17,34].

4.1 Closed Formula for the Generating Function of Partitions for g < 3

This subsection brings per se no new results on genus partitions. We will rewrite the result of [34] in our
notation, which seems to be the canonical representation. The benefit of this representation is that we can
prove easily (see Appendix B) some conjectures made about specific genus partitions in [17]. We will use the
following representation for this:

Proposition 4.1. Let X(y) = 1
y +

∑
i≥1 κiy

i−1, then the number of genus partitions according to the sizes of
their blocks are counted for genus 1 by

W (1)
par(X(y)) =

1

X ′(y)

∂

∂y

(
1

4y4X ′(y)2
+

1

6y6X ′(y)3

)
and for genus 2 by

W (2)
par(X(y)) =

1

X ′(y)

∂

∂y

[
21

8y8X ′(y)4
+

74

5y10X ′(y)5
+

24

y12X ′(y)6
+

12

y14X ′(y)7

− X(3)(y)

8y8X ′(y)6
− X(3)(y)

4y10X ′(y)7
− X(3)(y)

8y12X ′(y)8

+

(
X(2)(y)

)2
24y6X ′(y)6

+

(
X(2)(y)

)2
y8X ′(y)7

+
19
(
X(2)(y)

)2
8y10X ′(y)8

+
35
(
X(2)(y)

)2
24y12X ′(y)9

+
X(2)(y)

y7X ′(y)5
+

23X(2)(y)

3y9X ′(y)6
+

29X(2)(y)

2y11X ′(y)7
+

8X(2)(y)

y13X ′(y)8

]
.

Proof. This is just a rewriting of the results of [34] by identifying the generating series

W (g)
par(x) =

Z(g)( 1
x )

x
, X(y) =

1 +W (y)

y
.

Applying this definitions to the X̃l(x), Ỹl(x) and V (x) of [34] gives us the following expressions in terms of
X(y):

X̃l(x) →
(−y)l
(l−1)!X

(l−1)(y) + 1

y2l(X ′(y))l
, l > 2,

X̃2(x) → −y
2X ′(y) + 1

y2X ′(y)
,

Ỹl(x) → (−y)l(X(y)y)(l)

l!y2l(X ′(y))l
,
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1− V (x) → −yX
′(y)

X(y)
.

Note that the denominator of 1 − V (x) cancels exactly the additional factor of x in the definition of W
(g)
par(x)

comparing to Z(g)(x).
With all definitions in place, we write the functional relations [34, Thm 1 & 2] of Z(1)(x) and Z(2)(x) in our

notation. We find that a derivative wrt X(y) can be pulled out in general and get the assertion.

The new representation shows that W
(g=1,2)
par (X(y)) has just poles at the ramification points of X(y), i.e.

{y ∈ C|X ′(y) = 0}, the possible pole at y = 0 vanishes due to the second order pole of X ′(y) at y = 0.

Furthermore, W
(g=1,2)
par (X(y)) has a global primitive on the complex continued y-plane. Thus, there is no purely

first-order pole at the ramification points. In other words, the residue at the ramification points vanishes. The
leading pole is of order 6g − 1 for g = 1, 2. All these analyticity properties are the same for complex continued
generating functions of genus permutations.

From the representation of Proposition 4.1, the moments m
(g)
n can be extracted easily:

Example 4.1. Insert W
(g)
par(X(y)) for generic κi into the formula (5)

m(g)
n = −Resy→0W

(g)
par(X(y))X(y)nX ′(y)dy.

First, moments are given by:

m
(1)
4 =κ22

m
(1)
5 =5κ1κ

2
2 + 5κ3κ2

m
(1)
6 =10κ32 + 15κ21κ

2
2 + 30κ1κ3κ2 + 9κ4κ2 + 6κ23

m
(1)
7 =35κ22κ

3
1 + 105κ2κ3κ

2
1 + 70κ32κ1 + 42κ23κ1 + 63κ2κ4κ1 + 70κ22κ3 + 21κ3κ4 + 14κ2κ5

m
(2)
6 =κ23

m
(2)
7 =14κ3κ

2
2 + 7κ1κ

2
3 + 7κ3κ4

m
(2)
8 =21κ42 + 112κ1κ3κ

2
2 + 54κ4κ

2
2 + 100κ23κ2 + 28κ21κ

2
3 + 12κ24 + 56κ1κ3κ4 + 16κ3κ5

For g = 1, 2, the generating series are as an expansion about x = ∞, W
(g)
par(x) = O( 1

x2g+2 ). We prove some
minor conjectures made in [17] by using Proposition 4.1 in Appendix B.

4.2 Generalisation

We can consider for genus partitions the same generalisations as for permutations in Sec. 3.3. Allowing more
boundaries is already an interesting task. While for the non-crossing permutations, the cylinder was understood
in [14], there is just some qualitative understanding for non-crossing partitions on the cylinder [29]. In the context
of Coxeter groups, there is some study on set partitions on a cylinder [8] but the precise connection to this
article is not completely clear to us. We will provide the explicit formula for counting non-crossing partitions on
the cylinder. On the other hand, for partitions, one could also include topologically nontrivial blocks in exactly
the same manner as for permutations. This means that a block of a partition can be separated into two or
more parts that are connected in a topologically nontrivial way, winding around the cylinder, or can even have
a higher genus. The topology of a given genus partition includes then all topologies of its blocks. We will not
give precise and general definitions in this article but want just to present the result for non-crossing partitions
on the cylinder and postpone the general question for future work.

For the cylinder, as mentioned above, a partition can be extended with a block of cylindric topology exactly
in the same way as in [14]. Forgetting the cyclic structure is trivial on the cylinder for a cycle with cylindric
topology. Therefore, we associate an indeterminate κi,j to a block of cylindric topology connecting i points
on one boundary with j points on the other boundary. Define the generating function to be (the same as for
permutations)

X(y1, y2) =
∑
i,j≥1

κi,jy
i−1
1 yj−12 .

Then, we find the following result for counting partitions of cylindric topology:

Theorem 4.1. Let W
(0)
par,2(x1, x2) =

∑
i,j≥1

m
(0)
i,j

xi+1
1 xj+1

2

be the generating series of connected partitions of cylindric

type with m
(0)
i,j the coefficient having i elements on one boundary and j on the other. A factor κi is associated
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with a block with i elements and κi1,i2 to a block with cylinder type connecting i1 elements of one boundary with
i2 of the other. Let further be X(y) = 1

y +
∑
i≥1 κiy

i−1. Then, the following holds

W
(0)
par,2(X(y1), X(y2)) =

X(y1, y2) + 1
(y1−y2)2

X ′(y1)X ′(y2)
− 1

(X(y1)−X(y2))2
(10)

+

1
y1y2

+ X(y1)−X(y2)
y1−y2 − ∂y1∂y2

(
y1y2

X(y1)−X(y2)
y1−y2

)
X ′(y1)X ′(y2)

.

Proof. The proof follows from the counting problem of permutations (9) by forgetting the cyclic order to get
partitions. We have to distinguish between three contributions:

(1) terms including κi,j

(2) terms including just κi’s, where more than one block connects the two boundaries

(3) terms including just κi’s, where exactly one block connects the two boundaries.

Taking permutations into account and forgetting the cyclic structure of the cycles, the first two cases (1) and
(2) are in one-to-one correspondence to partitions.

Looking more precisely at (1), terms including cycles with cylinder type are of the form

κi,jκi1κi2 ...

Forgetting the cyclic structure of κi,j gives a unique partition of cylindric type, because the cycles of κi,j are in
consecutive order since otherwise it would have a higher genus due to the definition (8). Furthermore, all cycles
associated with κi1 , κi2 , ... give unique blocks for the partition since each cycle is just connected to one of the
boundaries and we can use the same argument as for planar permutations vs partitions (disc). That is, planar
permutations and partitions are in one-to-one correspondence. In Fig. 4, the upper left permutation gives just
one partition which is the lower left one.

Now we are looking at (2), which are cycles just of disc topology κi’s and at least two cycles are connecting
the boundaries. Taking any set associated with cycles of a permutation of this type, there is no other way of
generating cycles with these sets. A cycle connecting the two boundaries would need a nontrivial twist in the
cylinder which would cross another cycle connecting the two boundaries, which is not allowed.

The last and most important case is (3), where we have just one cycle of disc topology connecting the two
boundaries, and all the other cycles are connected to just one boundary. This is closely related to (1), as shown
in Fig. 4. Taking a permutation of Case (1) of the form κi,jκi1κi2 ..., there are i · j associated permutations of
the form κi+jκi1κi2 ..., where all κil are the same cycles. These i · j possibilities arise by fixing how one element
on the first boundary (i possibilities) is mapped to an element on the second (j possibilities). For partitions,
on the other hand, there is just one way of going from κi,j → κi+j , since all the i · j cycles of the form κi+j give
the same block in a partition.

Therefore using the formula (9) we have to subtract the overcounted permutations to get partitions by
setting

κi,j 7→ κi,j + (1− i · j)κi+j .

A straightforward computation yields∑
i,j≥1

(1− i · j)κi+jyi−11 yj−12

=

∞∑
n=2

κn

n−1∑
k=1

(1− k(n− k))yk−11 yn−k−12

=
1

y1y2
+
X(y1)−X(y2)

y1 − y2
− ∂y1∂y2

(
y1y2

X(y1)−X(y2)

y1 − y2

)

which is the additional term appearing in (10) in comparison to (9).

The proof of Theorem 4.1 is somehow equivalent to the statements in [29], but combined additionally with
the functional relation (9) for permutations on the cylinder. The coefficients can be extracted easily from the
generating series via

m
(0)
i,j = Resy1,y2→0W

(0)
par,2(X(y1), X(y2))X(y1)iX(y2)jX ′(y1)X ′(y2)dy1dy2. (11)
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1’ 2’ 3’ 4’
5’

1234
5

1’
2’ 3’ 4’

5’

1234
5

1’
2’ 3’ 4’

5’

1
234

5

1
234

5
1234

5

1’ 2’ 3’ 4’
5’

1’ 2’ 3’ 4’
5’

Figure 4: The permutations above show how one can construct Case (3) from Case (1) by sending κi,j 7→ i·j ·κi+j
since there are i · j possibilities to generate cycles of length i+ j where all the other trivial cycles are the same.
The partitions below show that from Case (3) just one partition can be generated κi,j 7→ κi+j . All i · j
permutations above are in the same equivalence class as a partition.

Example 4.2. The first coefficients are computed from (11)

m
(0)
1,1 =κ1,1 + κ2

m
(0)
1,2 =κ2,1 + 2κ1κ1,1 + κ3 + 2κ1κ2

m
(0)
2,2 =κ2,2 + 4κ1κ2,1 + 4κ21κ1,1 + κ4 + 4κ1κ3 + 2κ22 + 4κ21κ2

m
(0)
1,3 =κ1,3 + 3κ1κ1,2 + 3κ2κ1,1 + 3κ21κ1,1 + κ4 + 3κ1κ3 + 3κ21κ2 + 3κ22

m
(0)
2,3 =κ2,3 + 3κ1κ2,2 + 2κ1κ1,3 + 3κ2κ1,2 + 9κ21κ1,2 + 6κ1κ2κ1,1 + 6κ31κ1,1

+ κ5 + 5κ1κ4 + 9κ2κ3 + 9κ21κ3 + 6κ31κ2 + 12κ1κ
2
2

m
(0)
3,3 =κ3,3 + 6κ1κ3,2 + 6κ21κ1,3 + 6κ2κ1,3 + 9κ21κ2,2 + 18κ1κ2κ1,2 + 18κ31κ1,2 + 9κ22κ1,1

+ 18κ21κ2κ1,1 + 9κ41κ1,1 + κ6 + 6κ1κ5 + 15κ2κ4 + 9κ41κ2 + 18κ31κ3 + 36κ21κ
2
2

+ 9κ23 + 15κ21κ4 + 54κ1κ2κ3 + 12κ32

which we also get from [30, p. 150] by substituting κi,j 7→ κi,j + (1− i · j)κi+j.

Remark 4.1. Genus permutations and their generalisation with topologically nontrivial cycles κ
(g)
n1,...,nb are

known to be governed by Topological Recursion, see Remark 3.1. Topological Recursion as an algorithm works
recursively in the Euler characteristic 2g + b − 2, where b is the number of boundary components. It is very
natural to ask if also genus partitions including more boundaries and more general topologically nontrivial blocks
follow an analogous recursion in the Euler characteristic. The method which derived the genus 2 result in [34] is
not of this nature. It is worth considering all generating series of partitions for any g and b and finding relations
between them, which are in this context called loop equations (Tutte equations or Dyson-Schwinger equations).
Genus partitions themselves seem not to be governed by Topological Recursion, at least not in an obvious way.
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A. Examples for Genus Permutations

In the following, we want to list a few important examples by specialising κi. The inverse of X(y) will have

just two branches such that W
(g)
per(x) can be written explicitly.

A.1 Factorials κi = 1

These results are of course not new at all (see for instance [15, 32, 33]), but achieved with new techniques and
in a universal setting.

For κi = 1, the geometric series yields

X(y) =
1

y
+

1

1− y
.

Inserting this into Theorem 3.1, we find

Wper(X(y)) =
∑
m≥0

(
y2(1− y)2

1− 2y

∂

∂y

)m(
y2(1− y)2

1− 2y

)

× [um]

exp

(
1
~ log

(
(y+ ~u

2 )(y−1− ~u
2 )

(y− ~u
2 )(y−1+ ~u

2 )

)
−
(

1
y + 1

1−y

)
u

)
~u

,

where Wper =
∑
g ~2g−1W

(g)
1 . This closed-type formula is to our knowledge new.

Substituting X(y) = 1
y + 1

1−y into Example 3.1, we get

W (0)
per(x) =

1

2
− 1

2

√
x− 4

x

=
1

x
+

1

x2
+

2

x3
+

5

x4
+

14

x5
+

42

x6
+

132

x7
+

429

x8
+

1430

x9
+

4862

x10
+O(x−11)

W (1)
per(x) =

1

(x− 4)5/2x3/2

=
1

x4
+

10

x5
+

70

x6
+

420

x7
+

2310

x8
+

12012

x9
+

60060

x10
+O(x−11)

W (2)
per(x) =

8x2 − 8x+ 9

(x− 4)11/2x5/2

=
8

x6
+

168

x7
+

2121

x8
+

20790

x9
+

174174

x10
+O(x−11)

W (3)
per(x) =

180x4 − 32x3 + 528x2 − 720x+ 450

(x− 4)17/2x7/2

=
180

x8
+

6088

x9
+

115720

x10
+O(x−11).

Adding them together, we find

~Wper(x) =
1

x
+

1

x2
+

2

x3
+

5 + ~2

x4
+

14 + ~210

x5
+

42 + ~270 + ~48

x6

+
132 + ~2420 + ~4168

x7
+

429 + ~22310 + ~42121 + ~6180

x8

+
1430 + ~212012 + ~420790 + ~66088

x9
+O(x−10)

Note that at ~ = 1, this sums up to the factorials as a formal expression coefficient-wise

Wper(x)|~=1 = Wper(x) =

∞∑
n=0

n!

xn+1
.

A.2 Stirling Numbers of the first kind κi = κ

Enhancing the problem to Stirling numbers of the first kind, we take κi = κ. The geometric series yields

X(y) =
1

y
+

κ

1− y
.
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Inserting this into Theorem 3.1, we find

Wper(X(y)) =
∑
m≥0

(
1

1
y2 −

κ
(1−y)2

∂

∂y

)m(
1

1
y2 −

κ
(1−y)2

)

× [um]

exp

(
1
~ log

(
(y+ ~u

2 )(y−1− ~u
2 )κ

(y− ~u
2 )(y−1+ ~u

2 )κ

)
−
(

1
y + κ

1−y

)
u

)
~u

.

Inserting X(y) = 1
y + κ

1−y into Example 3.1, we get

W (0)
per(x) =

−κ+ x+ 1−
√
κ2 − 2 (x+ 1)κ+ (−1 + x)

2

2x

=
1

x
+

κ

x2
+
κ (κ+ 1)

x3
+
κ3 + 3κ2 + κ

x4
+
κ (κ+ 1)

(
κ2 + 5κ+ 1

)
x5

+O(x−6)

W (1)
per(x) =

κx(
κ2 − 2 (x+ 1)κ+ (−1 + x)

2
)5/2

=
κ

x4
+

5κ (κ+ 1)

x5
+

15κ3 + 40κ2 + 15κ

x6
+

35κ (κ+ 1)
(
κ2 + 4κ+ 1

)
x7

+O(x−8)

W (2)
per(x) =

(
8x4 − 4 (κ+ 1)x3 +

(
−15(κ− 1)2 + 9κ

)
x2 + 10(κ+ 1)(κ− 1)2x+ (κ− 1)4

)
κx(

κ2 − 2 (x+ 1)κ+ (−1 + x)
2
)11/2

=
8κ

x6
+

84κ2 + 84κ

x7
+

469κ3 + 1183κ2 + 469κ

x8
+O(x−9)

Adding them together, we find

~Wper(x) =
1

x
+

κ

x2
+
κ (κ+ 1)

x3
+
κ3 + 3κ2 + κ(1 + ~2)

x4

+
κ (κ+ 1)

(
κ2 + 5κ+ 1 + 5~2

)
x5

+O(x−6)

Note again that at ~ = 1, this sums up to the Stirling numbers of the first kind as a formal expression coefficient-
wise

Wper(x)|~=1 = Wper(x) =

∞∑
n=0

∑n
k=0(−1)n−ks(n, k)κk

xn+1
.

A.3 Harer-Zagier κi = δi,2

Specialising the problem to count the Euler characteristic of the moduli space of complex curves, we take
κi = δi,2, i.e.

X(y) =
1

y
+ y.

Inserting this into Theorem 3.1, we find

Wper(X(y)) =
∑
m≥0

(
y2

1− y2
∂

∂y

)m(
y2

1− y2

)

× [um]

exp

(
1
~ log

(
(y+ ~u

2 )

(y− ~u
2 )

)
− u

y

)
~u

.

Inserting X(y) = 1
y + y into Example 3.1, we get

W (0)
per(x) =

1

2

(
x−

√
x2 − 4

)
=

1

x
+

1

x3
+

2

x5
+

5

x7
+

14

x9
+

42

x11
+

132

x13
+

429

x15
+

1430

x17
+

4862

x19
+O(x−21)
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W (1)
per(x) =

1

(x2 − 4)
5/2

=
1

x5
+

10

x7
+

70

x9
+

420

x11
+

2310

x13
+

12012

x15
+

60060

x17
+

291720

x19
+O(x−21)

W (2)
per(x) =

21
(
x2 + 1

)
(x2 − 4)

11/2

=
21

x9
+

483

x11
+

6468

x13
+

66066

x15
+

570570

x17
+

4390386

x19
+O(x−21)

W (3)
per(x) =

11
(
135x4 + 558x2 + 158

)
(x2 − 4)

17/2

=
1485

x13
+

56628

x15
+

1169740

x17
+

17454580

x19
+O(x−21)

Adding them together, we find

~Wper(x) =
1

x
+

1

x3
+

2 + ~2

x5
+

5 + ~210

x7
+

14 + ~270 + ~421

x9
+

42 + ~2420 + ~4483

x11

+
132 + ~22310 + ~46468 + ~61485

x13
+

429 + ~212012 + ~466066 + ~656628

x15

+O(x−17).

Note again that at ~ = 1, this sums up to the double factorial as a formal expression coefficient-wise

Wper(x)|~=1 = Wper(x) =

∞∑
n=0

(2n− 1)!!

x2n+1
.

B. Examples for Genus Partitions

Examples for genus partitions can be found extensively in [17]. To connect their examples with our notation,
we have to specify X(y) in Proposition 4.1 by the following way:

Bell numbers: X(y) =
1

y
+

1

1− y

Stirling 2nd: X(y) =
1

y
+

κ

1− y

Harer-Zagier: X(y) =
1

y
+ y

or with ”no singletons” just subtract 1 from X(y) from the first two examples. Note that for the Harer-
Zagier example, the formulae for genus permutations and partitions coincide since we are just allowing for
permutations to have cycles of length two which can give just one partition. However, the general formulae for
genus permutations and partitions are very different.

Exactly in the same way as in Appendix A, if we set ~ = 1 the genus Bell numbers and Stirling numbers of
the second kind sum up coefficient-wise to the ordinary Bell and Stirling numbers.

Now, we prove some minor open conjectures of [17]. The following Proposition proves and generalises an
observation in [17, Sec. 5.1] about so-called Faa di Bruno coefficients

Proposition B.1. Fix the size of blocks for partitions to be p ∈ N. Then, we have for k ∈ N

m
(1)
pk =

(p− 1)2p

2

k−2∑
l=0

(
pk

l

)
(k − 1− l)(k − l)(k + 1− l)

6
(p− 1)k−2−l.

Proof. Choose X(y) = 1
y + yp−1 since any block of the partition has just length p. This gives from Proposition

4.1 and (5)

m
(1)
pk =Resy=0

(p− 1)2py2p−1

2 ((p− 1)yp − 1)
4

(
1

y
+ yp−1

)pk
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=
(p− 1)2p

2
Resy=0

1

y(k−2)p+1

(
1 + yp

)pk
(1− (p− 1)yp)

4 .

Let us expand the right term(
1 + yp

)pk
(1− (p− 1)yp)

4 =

( pk∑
i=0

(
pk

i

)
yip
)( ∞∑

j=0

(j + 1)(j + 2)(j + 3)

6
(p− 1)jyjp

)
.

Now, only the y(k−2)p-coefficient contributes to the residue, which proves the assertion.

Similar computations can be performed for g = 2, but it is much more involved and does not give more
insight.

Another conjecture in [17, eq. (100)] is about genus 1 partitions with exactly 3 blocks of length r, p, q.

Proposition B.2. For pairwise different r, p, q ∈ N, we have

m
(1)
r+p+q =

n

2

[
p(p− 1)(q + r − 2) + q(q − 1)(p+ r − 2) + r(r − 1)(q + p− 2)

+ 8(p− 1)(r − 1)(q − 1)

]
.

Proof. It is sufficient to take X(y) = 1
y + yr−1 + yp−1 + yq−1. Note for n = r + p+ q, we can write

X(y)n =
1

yn
(1 + n(yp + yq + yr) + n(n− 1)(yr+q + yp+q + yr+p) + n(n− 1)(n− 2)yn + ...

as an expansion about y = 0, while the dotted terms will not contribute. Inserting into Proposition 4.1 and (5),
we compute first

W (1)
par(X(y))X ′(y)

=
∂

∂y

(
1

4(−1 + (p− 1)yp + (q − 1)yq + (r − 1)yr)2
+

1

6(−1 + (p− 1)yp + (q − 1)yq + (r − 1)yr)3

)
=

(p− 1)pyp−1 + (q − 1)qyq−1 + (r − 1)ryr−1

2(1− (p− 1)yp − (q − 1)yq − (r − 1)yr)3
− (p− 1)pyp−1 + (q − 1)qyq−1 + (r − 1)ryr−1

2(1− (p− 1)yp − (q − 1)yq − (r − 1)yr)4
.

Now collecting everything and taking the residue yields:

m
(1)
r+p+q = −Resy=0W

(1)(X(y))X(y)nX ′(y)

= −1

2

[
− n(p(p− 1)(q + r − 2) + q(q − 1)(p+ r − 2) + r(r − 1)(q + p− 2))

+ (12− 20)(p+ q + r)(p− 1)(r − 1)(q − 1)

]
which is the assertion and equivalent to the statement in [17, eq. (100)].
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