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Abstract: We continue the exploration of a question of dice relabeling posed by Gallian and Rusin: Given n
dice, each labeled 1 through m, how many ways are there to relabel the dice without changing the frequencies
of the possible sums? We answer this question in the case where n = 2 and m is a product of three prime
numbers. We also explore more general questions. We find a method for decomposing two m-sided dice into
two dice of different sizes and give some preliminary results on relabeling two dice of different sizes. Finally, we
refine a result of the aforementioned authors in the case where m is a prime power.
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1. Introduction and Summary of Results

George Sicherman posed and solved the following question.

Question 1.1. How many ways can one label two six-sided dice so that the frequency of all possible sums remain
the same as if they were both labeled 1 through 6?

Sicherman found that the answer was two. Either one can use the usual labeling on both dice (often called
the “standard” solution), or one can label one dice 1, 2, 2, 3, 3, 4 and the other dice 1, 3, 4, 5, 6, 8. This result was
discussed further and reported by Martin Gardner [6]. Inspired by this work, Broline explored this question for
an arbitrary number of platonic solids [2]. Gallian and Rusin addressed the more general question [5].

Question 1.2. Given n dice, each with labels 1 through m, how many ways can these dice be relabeled without
altering the frequencies of the sums?

By encoding the data of the frequencies and the labels on the dice as a generating function, Broline, Gallian,
and Rusin observed that one could factor the generating function encoding the frequencies using cyclotomic
polynomials (a method we go into further detail on later). Using this technique, Gallian and Rusin were able to
demonstrate that for any number of dice, there are three possible dice that could be used to answer Question
1.2 if m, the number of sides, is a product of two (not necessarily distinct) prime numbers [5, Theorem 2]. They
additionally have results for when m is a prime power and many other related questions to relabeling dice.

Many different types of results involving dice relabeling followed. In [10], they enumerate the frequency of
a particular sum given n m-sided dice. In [4], they characterize the numbers that can be realized as the sums
of relabeled six-sided dice. Other papers explored changing the probabilities of the sums from the usual ones
given by n m-sided dice. For instance, authors of [1,3,7,8] explored different questions assuming “equally likely
sums”, that is, all sums are equally likely. In [9], they consider “Pythagorean dice” which provide an alternative
probability distribution on the possible sums.

However, there remains many generalizations of Gallian’s and Rusin’s results involving the case where we
use the original probabilities. Indeed, at the end of their paper, Gallian and Rusin leave the readers with two
different further explorations of their ideas.

Question 1.3. How many relabelings are there in the case where m = p2q or m = pqr (where p, q, r are
distinct)?

Question 1.4. Can one find dice, not necessarily with the same number of sides, matching the frequencies of
n m-sided dice?
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In this paper, following the techniques of Gallian and Rusin, we address both these questions in the case
where the number of dice, n, is two. Our paper is organized as follows. In Section 2, we go over terminology
for this paper. In Section 3, we go over how we use generating functions and cyclotomic polynomials to reframe
the above questions. In this section, we also include cyclotomic polynomial identities, proving anything we did
not readily find in the literature. In section 4 and section 5, we address Question 1.3, separately dealing with
the two cases. In particular, we show the following.

Theorem 4.1. Let p and q be distinct prime numbers. There are 8 pairs of dice of size p2q whose frequencies
of possible sums agree with that of two p2q dice labeled 1 through p2q.

Theorem 5.1. Let p, q, and r be distinct prime numbers. There are 13 pairs of dice of size pqr whose frequencies
of possible sums agree with that of two pqr dice labeled 1 through pqr.

As an application of our results, we provide explicit lists of all possible labelings for the smallest cases of both of
these results in their respective section. From here, we explore types of generalizations of the question explored
in [5]. In section 6, we give our first approach to answering Question 1.4 by providing a way to take two standard
m-sided dice, and achieve the same frequencies with two dice of sizes a and b where m = ab. Specifically, we
demonstrate the following result, which is a Corollary to a result in Section 6.

Corollary 6.1. Let m = ab with a and b non-negative integers. Consider a dice size ab2 who labels come from
{1, 2, . . . , 2m− a} in the following way:

1. the numbers (i− 1)a+ 1, (i− 1)a+ 2, . . . , ia, 2m− (i+ 1)a+ 1, 2m− (i+ 1)a+ 2, . . . , 2m− ai each appear
i times on the dice for 1 ≤ i ≤ b− 1; and

2. the numbers m− a+ 1,m− a+ 2, . . . ,m appear b times on the dice.

This dice, along with a a-sided dice with labels 1 through a, has the same frequencies of sums as two m-sided
dice labeled 1 through m.

We will also discuss a surprising combinatorial connection to triangular numbers. In section 7, we explore the
following question.

Question 1.5. Given an m1-sided dice, labeled 1 through m1, and an m2-sided dice, labeled 1 through m2, how
many ways can one relabel both dice while not changing the frequencies of the sum?

We report preliminary results in this direction, namely, the following.

Proposition 7.1. The answer to Question 1.5 is none when m1 and m2 are distinct prime numbers.

Lemma 7.1. Suppose we have a p-sided dice with labels 1 through p and a pk-sided dice with labels 1 through
pk. There are k ways to relabel these dice without changing the frequencies of the possible sums.

Finally, in section 8, we refine the case of prime power-sized dice addressed in [5, Theorem 10].

2. Terminology

We follow the primary terminology set up by [5], namely:

Definition 2.1.

• The dice labeled 1 through m is called a standard dice.

• A dice with m sides has size m.

• Given a set of n dice which have the same frequencies of sums of n standard m-sided dice, any one of
these dice is called a solution.

Thus, Gallian and Rusin showed that when m is a product of two (not necessarily distinct) prime numbers,
there are three solutions. When n = 2, this gives rise to two possible pairs: two standard dice and the two other
dice guaranteed by their result.

Remark 2.1. Technically, when [5] defines “solution”, they require the corresponding dice to have size m. We
remove this condition as our results in Sections 6 and 7 allow for dice to have different sizes.
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3. Using Generating Functions and Cyclotomic Polyno-
mials

Question 1.2 can be reframed in the following way: How many collections of polynomials P1, P2, . . . , Pn, all
with non-negative integer coefficients, are there so that Pi(1) = m for all i and

P1P2 · · ·Pn =

(
m∑
i=1

xi

)n
= xn

(
xm − 1

x− 1

)n
?

Here, each polynomial Pi is the generating function of a given dice. That is, [xj ]Pi, the jth coefficient of Pi,

is the number of sides of the ith dice labeled j. Thus,

m∑
i=1

xi is the generating function for the standard dice of

size m. Thus, if we denote the product of the Pi’s as F (x), then [xj ]F is the number of ways in which a sum
of j can be achieved from the n dice corresponding to the polynomials P1, P2, . . . , Pn. We refer to F as the
frequency polynomial. Throughout this paper, we will see different formulations of F depending on the size of
the dice involved. Regardless of the explicit formulation of F , observe this gives a bijection between collections
of dice answering our question and factorizations of F with Pi(1) = m and [xj ]Pi ≥ 0 for all i and j. To this
end, we also refer to each Pi as solution, keeping in mind we really are referring to the dice that Pi represents.

Observe that solving this question relies on understanding the factorizations of xm − 1. The factors of
this polynomial are completely understood, as its irreducible factors are the cyclotomic polynomials. Results
on these polynomials are well understood and we will survey some of what is known here, starting with the
definitions.

Definition 3.1. Let m be a non-negative integer.

• A (complex-valued) solution to xm = 1 is called an mth root of unity.

• A primitive mth root of unity is an mth root of unity which is not a jth root of unity for any j < m.

• The cyclotomic polynomial φm(x) is the polynomial whose roots are the primitive mth roots of unity.

The following known identities are readily computed by identities that we will use throughout our paper.
In what follows, µ(n) is the Möbius function, which is 1 when n is square-free with an even number of prime
numbers, −1 when n is square-free with an odd number of prime numbers, and 0 otherwise. Additionally,
throughout, we assume p, q, r are prime numbers.

xn − 1 =
∏
d|n

φd(x)

φn(x) =
∏
d|n

(xd − 1)µ(n/d)

φp(x) =

p−1∑
i=0

xi =
xp − 1

x− 1

φpkm = φpm(xp
k−1

),where m is relatively prime to p. (1)

φmφpm = φm(xp),where prime p does not divide m. (2)

φn(1) =

{
p n = pk

1 otherwise

φpkq(x) =
(xp

k−1 − 1)(xp
kq − 1)

(xpk − 1)(xpk−1q − 1)

φpqr(x) =
(xp − 1)(xq − 1)(xr − 1)(xpqr − 1)

(x− 1)(xpq − 1)(xpr − 1)(xqr − 1)
.

Remark 3.1. One should note that the factors of the form xi−1 could all be written as 1−xi and the results, as
far as this paper is concerned, will remain unchanged. In future sections, we will often write rational functions
in both ways, depending on whatever is convenient for our proofs.

We will state and prove some additional identities that we will use but could not find referenced anywhere.
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Lemma 3.1. If p and q are prime numbers, then for all integers k ≥ 0,

k∏
i=0

φpiq(x) = φq(x
pk).

Proof. We proceed by induction on k. Observe that the statement holds for k = 0. If k > 0, then by induction,
we have (

k−1∏
i=0

φpiq(x)

)
φpkq(x) = φq(x

pk−1

)φpkq(x). (3)

Using identities (1) and (2), observe that

φpkq(x) = φpq(x
pk−1

) =
φq(x

pk)

φq(xp
k−1)

.

Rewriting the right-hand side of equation (3) yields

φq(x
pk−1

)φpkq(x) = φq(x
pk−1

)
φq(x

pk)

φq(xp
k−1)

= φq(x
pk),

as desired.

Lemma 3.2. For three distinct prime numbers, p, q, r,

φp(x) · φpq(x) · φpr(x) · φpqr(x) = φp(x
qr).

Proof. Recall that

φpqr(x) =
(xp − 1)(xq − 1)(xr − 1)(xpqr − 1)

(x− 1)(xpq − 1)(xpr − 1)(xqr − 1)

=
xp − 1

x− 1
· x

q − 1

xpq − 1
· x

r − 1

xpr − 1
· x

pqr − 1

xqr − 1

= φp(x) · 1

φp(xq)
· 1

φp(xr)
· φp(xqr).

Multiplying by φp(x) · φpq(x) · φpr(x) we have

φp(x) · φpq(x) · φpr(x) · φp(x) · 1

φp(xq)
· 1

φp(xr)
· φp(xqr).

Using identity (2) on the first four terms yields

φp(x
q) · φp(xr) ·

1

φp(xq)
· 1

φp(xr)
· φp(xqr).

Now we can cancel out some terms and we are left with φp(x
qr) as desired.

Before proceeding to our main arguments and results, we discuss one final technique that we will take
extensive advantage of. As we have seen, cyclotomic polynomials can be expressed as rational functions. We
will often consider the product of these cyclotomic polynomials, and because of the similarities in the different
formulas for the cases we will be considering, a lot of cancellation occurs between common factors. For example,
for primes p and q, we have

φpφpq =
xp − 1

x− 1

(x− 1)(xpq − 1)

(xp − 1)(xq − 1)
=
xpq − 1

xq − 1
.

We can further “simplify” this by writing it as a product of (possibly finite) formal series:

xpq − 1

xq − 1
=

1− xpq

1− xq
= (1− xpq)

∞∑
i=0

xiq.

Writing our functions in this way will be extremely useful in demonstrating when certain options for solutions
yield negative coefficients, and thus are not solutions.
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4. The p2q Case

In this section, we address question 1.2 in the case where n = 2 and m = p2q, where p and q are distinct prime
numbers. In this case, the frequency polynomial would be(

x(xp
2q − 1)

x− 1

)2

= x2φ2pφ
2
p2φ

2
qφ

2
pqφ

2
p2q.

Recall that if a polynomial P (x) corresponds to a solution, then in this case we must have P (1) = p2q. Thus,
such a polynomial has the form

xφqφ
cp
p φ

cp2

p2 φ
cpq
pq φ

cp2q

p2q

with integers 0 ≤ cp, cp2 , cpq, cp2q ≤ 2 where cp + cp2 = 2 and ci ≤ 2 for all i. This is because since φq(1) = q,
both φp(1) and φp2(1) equal p, and the other cyclotomic polynomials evaluate to 1 when x = 1.

Thus, Table 1 represents all potential pairs of solutions, organized by the sum of the exponents. We omit
the standard solution, where all exponents equal 1.

cp cp2 cpq cp2q ↔ cp cp2 cpq cp2q
1 1 0 0 ↔ 1 1 2 2
1 1 0 1 ↔ 1 1 2 1
1 1 1 0 ↔ 1 1 1 2
1 1 0 2 ↔ 1 1 2 0
2 0 0 0 ↔ 0 2 2 2
2 0 0 1 ↔ 0 2 2 1
2 0 1 0 ↔ 0 2 1 2
2 0 1 1 ↔ 0 2 1 1
2 0 0 2 ↔ 0 2 2 0
2 0 2 0 ↔ 0 2 0 2
2 0 1 2 ↔ 0 2 1 0
2 0 2 1 ↔ 0 2 0 1
2 0 2 2 ↔ 0 2 0 0

Table 1: The possible exponents for the solutions.

We shall refer to the tuple (cp, cp2 , cpq, cp2q) as an exponent vector for the corresponding polynomial. Both
(cp, cp2 , cpq, cp2q) and (2− cp, 2− cp2 , 2− cpq, 2− cp2q) must yield polynomials with positive coefficients for either
(and therefore both) to be considered a solution.

The following Lemma, and consequential Corollary, serves as a useful tool to determine one way which an
exponent vector can correspond to a polynomial with negative coefficients.

Lemma 4.1. Let F (x) be a function of the form

F (x) =

k∏
i=1

(1− xni)εi ,

where the ni are distinct positive integers and εi ∈ Z. If there exists a j for which nj = 1 and εj > 0, then
[x]F < 0.

Proof. Given such a j, we have [x](1 − xnj )εj = −εj . Since ni 6= 1 for all i 6= j, we have [x](1 − xni)εi = 0 for
i 6= j, whether written as is if εi > 0 or as a series when εi < 0. Since each of these terms additionally have the
constant 1, this implies the desired result.

Corollary 4.1. The polynomial with exponent vector (cp, cp2 , cpq, cp2q) has a factor of 1− x when expressed as
a (reduced) rational function if and only if

cpq − cp − 1 > 0.

Proof. When written as rational functions as in Section 3, φp and φq have a factor of 1−x on the denominator,
φpq has a factor of 1 − x on the numerator, and φp2 , φpq, and φp2q do not have a factor of 1 − x. Thus, the
exponent of 1− x in the polynomial corresponding to the given exponent vector is cpq − cp − 1.
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cp cp2 cpq cp2q ↔ cp cp2 cpq cp2q
1 1 0 0 ↔ 1 1 2 2
1 1 0 1 ↔ 1 1 2 1
1 1 1 0 ↔ 1 1 1 2
1 1 0 2 ↔ 1 1 2 0
2 0 1 0 ↔ 0 2 1 2
2 0 1 1 ↔ 0 2 1 1
2 0 2 0 ↔ 0 2 0 2
2 0 1 2 ↔ 0 2 1 0
2 0 2 1 ↔ 0 2 0 1
2 0 2 2 ↔ 0 2 0 0

Table 2: The rows from Table 1 not satisfying Corollary 4.1.

Removing any rows satisfying Corollary 4.1 yields the Table 2. Note such a vector necessarily has the form
(0, ∗, 2, ∗), where the entries with ∗ can be any value.

All but three of the rows can be guaranteed to have positive coefficients by using a combination of the
identities Lemma 3.1, φqφpq = φqx

p, φpφpq = φp(x
q), and φp2φqp2 = φp2(x2). These three cases are in the

following table.

cp cp2 cpq cp2q ↔ cp cp2 cpq cp2q
1 1 0 2 ↔ 1 1 2 0
2 0 1 2 ↔ 0 2 1 0
2 0 2 2 ↔ 0 2 0 0

Table 3: The rows from Table 2 which we can not guarantee have positive coefficients.

We demonstrate explicitly that in each case, one of the pairs has negative coefficients by expressing the
corresponding polynomials as a product of series. In the following proofs, we omit the formulation of these
products, though the rough computation can be found in Appendix A.1.

Lemma 4.2. The polynomial with exponent vector (1, 1, 0, 2), which we denote A1102, has a negative coefficient.

Proof. After, simplification, we have

A1102 = (1− xq)(1− xp)2(1− xp
2q)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xip
2

)( ∞∑
i=0

xipq

)2

.

Let us discuss all the ways in which xp+q−1 appears.

To start, we have the following terms which come from the terms (1− xq), (1− xp)2, and

( ∞∑
i=0

xi

)2

:

• −xq · pxp−1 = −pxp+q−1

• −2xp · qxq−1 = −2qxp+q−1

• (p+ q)xp+q−1

When q > p, we must account for the x2p term appearing in (1 − xp)2. In this case, we additionally have
x2p · (q − p)xq−p−1 = (q − p)xp+q−1. Observe the sum of these terms is precisely{

−q p > q

−p q > p.

Next, note that p + q − 1 < pq for all prime numbers p and q. Thus,
(∑

xipq
)2

never contributes to such
coefficients. On the other hand, it is quite possible to have p + q − 1 > p2. However, this can only occur if
q > p, as if q < p, we have that

p+ q − 1 < 2p− 1 < p2.
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Thus, we are done in the case where q < p. We proceed assuming q > p(and thus, the current accumulated
coefficient of xp+q−1 is −p) and p+ q− 1 > p2 . The remaining coefficients for xp+q−1 is given by the following:

[xp+q−1]


⌊

p+q−1

p2

⌋∑
i=1

xip
2

(p+ q − ip2)xp+q−ip
2−1 +

⌊
q−1

p2

⌋∑
i=1

−2xpxip
2

(q − ip2)xq−ip
2−1

+

⌊
q−p−1

p2

⌋∑
i=1

x2pxip
2

(q − p− ip2)xq−p−ip
2−1



=

⌊
p+q−1

p2

⌋∑
i=1

(p+ q − ip2)− 2

⌊
q−1

p2

⌋∑
i=1

(q − ip2) +

⌊
q−p−1

p2

⌋∑
i=1

(q − p− ip2).

Suppose that p2 > q−1, and thus p2 > q−p−1. This implies that p+q−1
p2 < 2 so the above sum is p+q−p2,

which when combined with the −p above is q − p2 ≤ 1. If p = 2, note that this implies q = 3, and in this case
q − p2 = −1. If p > 2, then q − p2 is an even number, and since q 6= p2 this implies q − p2 < 0.

If p2 ≤ q−1 but p2+p > q−1, note that 1 ≤
⌊
q−1
p2

⌋
≤
⌊
p2+p
p2

⌋
< 2. Meanwhile, 1 ≤

⌊
p+q−1
p2

⌋
≤
⌊
p2+2p
p2

⌋
≤ 2.

However, the right-most inequality is only an equality when p = 2, and since q − 1 < p2 + p = 6, this would

imply that either q = 3 or q = 5, and in both cases
⌊
p+q−1
p2

⌋
≤ 1. The above sum, when combined with −p,

gives −q − 3p2 < 0.
If p2 + p ≤ q − 1, we have a few cases depending on if⌊

p+ q − 1

p2

⌋
=

⌊
q − 1

p2

⌋
or ⌊

q − 1

p2

⌋
=

⌊
q − p− 1

p2

⌋
.

If both are true, the above three sums become 0. If only the first is true, when combined with −p, the sums
give

−q +

⌊
q − 1

p2

⌋
p2 < 0.

In the last case, when only the second is true, the three terms combined with −p give

q −
⌊
p+ q − 1

p2

⌋
p2 = q −

(⌊
q − 1

p2

⌋
+ 1

)
p2 = q −

(⌊
q

p2

⌋
+ 1

)
p2,

where the last equality is true since q is prime and so p2 does not divide q. Observe that
⌊
q
p2

⌋
p2 is the smallest

multiple of p2 smaller than q, so the above must be negative.

Lemma 4.3. The polynomial with exponent vector (2, 0, 2, 2), which we denote A2022, has a negative coefficient.

Proof. After simplification, we have

A2022 = (1− xp)2(1− xp
2q)2

( ∞∑
i=0

xi

)( ∞∑
i=0

xiq

)( ∞∑
i=0

xip
2

)2

.

First, if q > p, observe that the xp coefficient is precisely

−2xp + xp = −xp.

Otherwise, if q < p, observe that it is possible that the sum
∑
xiq could contribute additional terms that

make the coefficient of xp non-negative.

Let m = p +
⌊
p
q

⌋
q. We claim the coefficient of xm is −1. First, note that m < 2p < p2 since p > 2. Now

see that the coefficient of xm is

[xm]

bm
q c∑
i=0

xiqxm−iq − 2

bm−p
q c∑
i=0

xpxiqxm−p−iq

 = −1 +

⌊
p

q

⌋
+

⌊
p

q

⌋
− 2

⌊
p

q

⌋
= −1.
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Lemma 4.4. The polynomial with exponent vector (2, 0, 1, 2), which we denote A2012, has a negative coefficient.

Proof. After simplification, we have

A2012 = (1− xp)3(1− xp
2q)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xip
2

)2( ∞∑
i=0

xipq

)
.

Note that 2p− 1 < p2 and 2p− 1 ≤ pq for all prime numbers p and q. Thus, the only terms that contribute to

the coefficient of x2p−1 is (1− xp)3 and
(∑

xi
)2

. Observe, between these two, the term of the form x2p−1 is

−3xp · pxp−1 + 2px2p−1 = −px2p−1.

whose coefficient is negative.

Thus, with all these Lemmas, the following table indicates all possible solutions in the case of p2q.

cp cp2 cpq cp2q ↔ cp cp2 cpq cp2q
1 1 0 0 ↔ 1 1 2 2
1 1 0 1 ↔ 1 1 2 1
1 1 1 0 ↔ 1 1 1 2
2 0 1 0 ↔ 0 2 1 2
2 0 1 1 ↔ 0 2 1 1
2 0 2 0 ↔ 0 2 0 2
2 0 2 1 ↔ 0 2 0 1
1 1 1 1 ↔ 1 1 1 1

Table 4: The solutions for the p2q case.

Theorem 4.1. Table 4 makes up all possible solutions for the p2q. In particular, there are 15 solutions
(specifically, 8 possible pairs of dice).

Example 4.1. Since 12 = 22 · 3, the following make up the complete list of labels for two 12-sided whose sums
have the same frequencies of two standard 12-sided dice. These are ordered in the same way as in Table 4.

• 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6 and 1, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 18.

• 1, 2, 2, 3, 3, 4, 7, 8, 8, 9, 9, 10 and 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14.

• 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8 and 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16.

• 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7 and 1, 3, 5, 7, 7, 9, 9, 11, 11, 13, 15, 17.

• 1, 2, 2, 3, 5, 6, 6, 7, 9, 10, 10, 11 and 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13.

• 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9 and 1, 2, 3, 7, 7, 8, 8, 9, 9, 13, 14, 15.

• 1, 2, 4, 5, 5, 6, 8, 9, 9, 10, 12, 13 and 1, 2, 3, 3, 4, 5, 7, 8, 9, 9, 10, 11.

5. The pqr Case

In this section, we address question 1.2 in the case where n = 2 and m = pqr, where p, q, and r are distinct
prime numbers. In this case, the frequency polynomial would be(

x(xpqr − 1)

x− 1

)2

= x2φ2pφ
2
qφ

2
rφ

2
pqφ

2
prφ

2
qrφ

2
pqr.

Recall that if a polynomial P (x) corresponds to a solution, then in this case we must have P (1) = pqr.
Thus, such a polynomial has the form

xφpφqφrφ
cpq
pq φ

cpr
pr φ

cqr
qr φ

cpqr
pqr

with integers 0 ≤ cp, cq, cr, cpq, cpr, cqr, cpqr ≤ 2. This is because φp(1) = p, φq(1) = q, φr(1) = r, and all other
cyclotomic polynomials involved equal 1 when evaluated at x = 1.
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Thus, Table 5 represents all potential pairs of solutions, organized by the sum of the exponents. We omit
the standard solution, where all exponents equal 1. We additionally omit repetitions due to symmetry. For
instance,

φpφqφrφ
2
pqφqrφpqr

and
φpφqφrφpqφ

2
qrφpqr

are similar in that the latter is achieved by swapping p and q. Knowing one of these is a solution for all p, q,
and r is equivalent to showing the same for the other by applying an appropriate permutation of p, q, and r.

cpq cpr cqr cpqr ↔ cpq cpr cqr cpqr
0 0 0 0 ↔ 2 2 2 2
1 0 0 0 ↔ 1 2 2 2
0 0 0 1 ↔ 2 2 2 1
2 0 0 0 ↔ 0 2 2 2
0 0 0 2 ↔ 2 2 2 0
1 1 0 0 ↔ 1 1 2 2
1 0 0 1 ↔ 1 2 2 1
2 1 0 0 ↔ 0 1 2 2
2 0 0 1 ↔ 0 2 2 1
1 0 0 2 ↔ 1 2 2 0
1 1 1 0 ↔ 1 1 1 2
1 1 0 1 ↔ 1 1 2 1
2 0 0 2 ↔ 0 2 2 0
2 1 1 0 ↔ 0 1 1 2
2 1 0 1 ↔ 0 1 2 1

Table 5: The possible exponents for the solutions.

We shall refer to the tuple (cpq, cpr, cqr, cpqr) as an exponent vector. Both (cpq, cpr, cqr, cpqr) and (2−cpq, 2−
cpr, 2−cqr, 2−cpqr) must yield polynomials with positive coefficients for either (and thus both) to be a solution.

Recall by Lemma 4.1 that a polynomial has a negative coefficient if a factor of 1−x appears on the numerator
when reduced and written as a rational function. The following is a Corollary that will allow us to remove many
entries appearing in Table 5 which have a negative coefficient.

Corollary 5.1. The polynomial with exponent vector (cpq, cpr, cqr, cpqr) has a factor of 1 − x in its rational
function if and only if

cpq + cpr + cqr − cpqr − 3 > 0.

Proof. When written as rational functions, φp, φq, φr, and φpqr have a factor of 1 − x on the denominator,
while φpq, φpr, φqr have a factor of 1 − x on the numerator. Thus, the exponent of 1 − x in the polynomial
corresponding to the given exponent vector is cpq + cpr + cqr − cpqr − 3.

Due to this, after eliminating the rows satisfying the conditions in the prior Corollary, we have the following.

cpq cpr cqr cpqr ↔ cpq cpr cqr cpqr
1 0 0 0 ↔ 1 2 2 2
2 0 0 0 ↔ 0 2 2 2
1 1 0 0 ↔ 1 1 2 2
2 1 0 0 ↔ 0 1 2 2
2 0 0 1 ↔ 0 2 2 1
1 1 1 0 ↔ 1 1 1 2
1 1 0 1 ↔ 1 1 2 1
2 1 0 1 ↔ 0 1 2 1

Table 6: Table 5 after removing rows satisfying Corollary 5.1.

We can further reduce this list, using Theorem 3.2, which has the following implication.

Corollary 5.2. If a given exponent vector, after successive differences with at least one of (1, 1, 0, 1), (1, 0, 1, 1),
or (0, 1, 1, 1), has at most one 1, the corresponding polynomial has positive coefficients.

ECA 5:2 (2025) Article #S2R9 9



Yikai Chao, Josh Gabel, Carlye Larson, and George D. Nasr

Proof. For each removal of such a vector which is legal, this corresponds to an application of Theorem 3.2. For
instance, (cpq, cpr, cqr, cpqr) − (1, 1, 0, 1) corresponds to applying the identity φpφpqφprφpqr = φp(x

qr), which
has positive coefficients. If after applying all differences we end with vectors such as (1, 0, 0, 0), (0, 1, 0, 0), or
(0, 0, 1, 0), these can be combined with φp, φq, or φr using the identity from equation 2 to achieve a polynomial
with positive coefficients.

After applying Corollary 5.2 or equation 2 to entries in Table 6, we are left with the following which can not
be guaranteed to have positive coefficients.

cpq cpr cqr cpqr ↔ cpq cpr cqr cpqr
2 0 0 0 ↔ 0 2 2 2
2 1 0 0 ↔ 0 1 2 2
2 0 0 1 ↔ 0 2 2 1
1 1 1 0 ↔ 1 1 1 2

Table 7: Table 6 after removing rows where both solutions can be guaranteed to have positive coefficients using
Corollary 5.2 and the identity in equation 2.

In what remains in Table 7, we claim each row has an entry corresponding to a polynomial with a negative
coefficient. We prove this in four separate results by expressing the corresponding polynomials as products of
series. In the following proofs, we omit the formulation of these products, though the rough computation can
be found in Appendix A.2.

Lemma 5.1. The polynomial corresponding to exponent vector (0, 2, 2, 2), which we denote A0222, has a negative
coefficient.

Proof. After simplification, one can write A0222 as the following product:

(1− xp)(1− xq)(1− xpqr)2
( ∞∑
i=0

xi

)( ∞∑
i=0

xir

)( ∞∑
i=0

xipq

)
.

We proceed by cases based on the relative values of p, q, and r.
Suppose first r is the largest. In this case, we consider [xM ]A0222 where M = max(p, q). Note that M < r,

M < pq, and M < pqr, so we have

[xM ]A0222 = [xM ](1− xp)(1− xq)

( ∞∑
i=0

xi

)
= [xM ](−xpxM−p − xqxM−q + xM ) = −1.

Suppose now that p or q is the largest. Note that A0222 is symmetric in p and q, so it suffices to prove this
in just one case. To this end, we will assume p is the largest. We proceed by cases on the relative values of r
and q.

Case 1: First, suppose r < q < p. We claim there exists a j ∈ [1, r − 1] so that [xp+q−j ]A0222 is negative. Note
that p+ q − j < pqr and p+ q − j < pq, so

[xp+q−j ]A0222 = [xp+q−j ](1− xp)(1− xq)

( ∞∑
i=0

xi

)( ∞∑
i=0

xir

)

= [xp+q−j ]

−b
q−j
r c∑
i=0

xpxirxq−j−ir −
b p−j

r c∑
i=0

xqxirxp−j−ir +

b p+q−j
r c∑
i=0

xirxp+q−j−ir


= −

⌊
q − j
r

⌋
−
⌊
p− j
r

⌋
+

⌊
p+ q − j

r

⌋
− 1.

Note that r, q, and p are all prime, so r does not divide the other two. To this end, let j be selected
minimally so that q − j or p− j is divisible by r. By symmetry, we may suppose that j is minimized by
making q − j divisible by r. We necessarily have that j ∈ [1, r − 1]. Then using the identity that

bx+ nc = bxc+ n

for all integers n, we have know that ⌊
p+ q − j

r

⌋
=
⌊p
r

⌋
+
q − j
r

.
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Due to our choice of j, this means that ⌊p
r

⌋
=

⌊
p− j
r

⌋
.

From this, we can conclude that

−
⌊
q − j
r

⌋
−
⌊
p− j
r

⌋
+

⌊
p+ q − j

r

⌋
= 0

and so [xp+q−j ]A0222 = −1.

Case 2: Now suppose that q < r < p. In this case, we choose a non-negative integer j < q and study [xp+j ]A0222.
Observe that

[xp+j ]A0222 = [xp+j ](1− xp)(1− xq)

( ∞∑
i=0

xi

)( ∞∑
i=0

xir

)

= [xp+j ]

−xpxj − b
p+j−q

r c∑
i=0

xqxirxp+j−q−ir +

b p+j
r c∑
i=0

xirxp+j−ir


= −

⌊
p+ j − q

r

⌋
+

⌊
p+ j

r

⌋
− 1.

If the interval of integers [p− q + 1, p] does not have a multiple of r, we have⌊
p− q
r

⌋
=
⌊p
r

⌋
,

and so in this case, by letting j = 0, we have [xp]A0222 = −1. Otherwise, choose j so that j ≤ q and r
divides (p + j − q). Note that, in fact, j ≤ q − 1, since if we let j = q this would imply that r divides p.
Since q < r, this implies ⌊

p− q + j

r

⌋
=

⌊
p+ j

r

⌋
,

so [xp+j ]A0222 = −1.

Lemma 5.2. The polynomial corresponding to exponent vector (0, 1, 2, 2), which we denote A0122, has negative
coefficients.

Proof. After simplification, A0122 is

(1− 2xp + x2p)(1− xq)(1− xpqr)2
( ∞∑
i=0

(i+ 1)xi

)( ∞∑
i=0

xipr

)( ∞∑
i=0

xipq

)2

.

We proceed by cases on the relative values of p, q, and r. First, suppose that r is the largest. Note that
p+ q− 1 < pq < pr. Also p+ q− 1 < 2p if and only if q− 1 < p if and only if q < p (since q and p are distinct).
Thus, [xp+q−1]A0122 depends on the relative value of p and q. Let δ(•) be the kronecker delta, returning 0 if •
is false and 1 if • is true. Then

[xp+q−1]A0122 = [xp+q−1](1− 2xp + x2p)(1− xp)

( ∞∑
i=0

(i+ 1)xi

)
= [xp+q−1](−2xp · qxq−1 − xq · pxp−1 + (q + p)xp+q−1 + δ(p < q)x2p(q − p)xq−p−1)

= −q + δ(p < q)(q − p),

which is less than 0 regardless of the relative values of p and q.
Now suppose p is the largest among the prime numbers. Note we still have that p+q−1 < pr, p+q−1 < pq,

and this time we always have p+ q − 1 < 2p. Thus, [xp+q−1]A0122 < 0 in this case as well.
All that remains is the case where q is the largest. We again study the coefficient of xq+p−1. We still have

that p + q − 1 < pq. However, p + q − 1 > 2p, and it is possible that pr < q + p − 1. We proceed carefully in
two cases.
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Case 1: Suppose pr > q. Note we can not have ipr < q + p− 1 for i ≥ 2 as then 2 ≤ i < q+p−1
pr < 2, since pr > q.

Thus, we have

[xp+q−1]A0122 = [xp+q−1](1− 2xp + x2p)(1− xq)
(∑

(i+ 1)xi
)( ∞∑

i=0

xipr

)( ∞∑
i=0

xipq

)2

= [xp+q−1](−2xp · qxq−1 − xq · pxp−1 + (q + p)xp+q−1

+ x2p(q − p)xq−p−1 + δ(pr ≤ q + p− 1)xpr(q + p− pr)xq+p−pr−1

= −p+ δ(pr ≤ q + p− 1)(q + p− pr),

which is always negative since q < pr.

Case 2: Suppose now that q > pr. (Note this implies q > 2p as well.) In this case, our coefficient can be much
more complicated. Indeed, this time we have

[xp+q−1]A0122 = [xp+q−1]

−2

b q−1
pr c∑
i=0

xpxipr(q − ipr)xq−ipr−1 − xq · pxp−1

+

b q−p−1
pr c∑
i=0

x2pxipr(q − p− ipr)xq−p−ipr−1 +

b q+p−1
pr c∑
i=0

xipr(q + p− ipr)xq+p−ipr−1


= −p− 2

b q−1
pr c∑
i=0

(q − ipr) +

b q−p−1
pr c∑
i=0

(q − p− ipr) +

b q+p−1
pr c∑
i=0

(q + p− ipr).

Note that the limits of the sums must pairwise differ by at most one, and together be at most two
distinct integers since the numerators span the interval [q− p− 1, q+ p− 1], which has length 2p and the
denominators are pr which is greater than or equal to 2p. That is, we must have⌊

q + p− 1

pr

⌋
=

⌊
q − 1

pr

⌋
or ⌊

q − 1

pr

⌋
=

⌊
q − p− 1

pr

⌋
.

If both equalities hold, the above sum becomes −p. If we only have
⌊
q+p−1
pr

⌋
=
⌊
q−1
pr

⌋
, then the above

sum becomes

−(q −
⌊
q − 1

pr

⌋
pr),

which is negative since pr does not divide q, so necessarily
⌊
q−1
pr

⌋
≤
⌊
q
pr

⌋
< q

pr . Finally, if we only have⌊
q−1
pr

⌋
=
⌊
q−p−1
pr

⌋
, the above sum becomes

q −
⌊
q + p− 1

pr

⌋
pr = q −

(⌊
q − 1

pr

⌋
+ 1

)
pr = q −

⌊
q

pr

⌋
pr − pr.

The final equality is true since pr does not divide q. This must be negative since
⌊
q
pr

⌋
pr is the largest

integer multiple of pr smaller than q.

Lemma 5.3. The polynomial corresponding to exponent vector (2, 0, 0, 1), which we denote A2001, has a negative
coefficient.

Proof. After simplification, the corresponding polynomial is

(1− 2xr + x2r)(1− xpq)(1− xpqr)

( ∞∑
i=0

(i+ 1)xi

)( ∞∑
i=0

xipr

)( ∞∑
i=0

xiqr

)
.
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We will study the coefficient of xr+pq−1. First, we suppose r is the largest among the three prime numbers. In
this case, note that pq < pr and r+pq

pr < 2. We have the same identities with qr in place of pr. Thus, we have

[xpq+r−1]A2001 = [xpq+r−1]

(
−2xr · pqxpq−1 − xpq · rxr−1 + (pq + r)xpq+r−1

+

⌊
r + pq

pr

⌋
xpr · (r + pq − pr)xr+pq−pr−1 +

⌊
r + pq

qr

⌋
xqr · (r + pq − qr)xpq−qr−1

)
≤ [xpq+r−1]

(
−2xr · pqxpq−1 − xpq · rxr−1 + (pq + r)xpq+r−1

+xpr · (r + pq − pr)xr+pq−pr−1 + xqr · (r + pq − qr)xpq−qr−1
)

= pq + 2r − pr − qr,

which is negative.
If r is not the largest prime then we have

[xpq+r−1]A2001 = [xpq+r−1]

(
−2xr · pqxpq−1 − xpq · rxr−1 + (pq + r)xpq+r−1 + x2r · (pq − r)xpq−r−1

− 2

⌊
pq−1
pr

⌋∑
i=1

xrxipr · (pq − ipr)xpq−ipr−1 − 2

⌊
pq−1
qr

⌋∑
i=1

xrxiqr · (pq − iqr)xpq−iqr−1

+

⌊
pq+r−1

pr

⌋∑
i=1

xipr · (r + pq − ipr)xr+pq−ipr−1 +

⌊
pq+r−1

qr

⌋∑
i=1

xiqr · (r + pq − iqr)xr+pq−iqr−1

+

⌊
pq−r−1

pr

⌋∑
i=1

x2rxipr · (pq − ipr − r)xpq−ipr−r−1

+

⌊
pq−r−1

qr

⌋∑
i=1

x2rxiqr · (pq − r − iqr)xpq−iqr−r−1

)

= −r − 2

⌊
pq−1
pr

⌋∑
i=1

(pq − ipr)− 2

⌊
pq−1
qr

⌋∑
i=1

(pq − iqr) +

⌊
pq+r−1

pr

⌋∑
i=1

(r + pq − ipr)

+

⌊
pq+r−1

qr

⌋∑
i=1

(r + pq − iqr) +

⌊
pq−r−1

pr

⌋∑
i=1

(pq − ipr − r) +

⌊
pq−r−1

qr

⌋∑
i=1

(pq − r − iqr).

If one groups the sums with pr together, one can see that following Case 2 of Lemma 5.2 these sums are
negative by replacing q with pq and p with r. Consequently, grouping the sums with qr together also yields a
negative value, and thus we’ve demonstrated the desired coefficient is negative.

Lemma 5.4. The polynomial corresponding to exponent vector which we denote A1112, has negative coefficients.

Proof. After simplification,

A1112 = (1− xp)(1− xq)(1− xr)(1− xpqr)2
( ∞∑
i=0

(i+ 1)xi

)( ∞∑
i=0

xipq

)( ∞∑
i=0

xipr

)( ∞∑
i=0

xiqr

)
.

Observe this polynomial is completely symmetric in the prime numbers p, q, and r. Thus, we may assume
without loss of generality that p < q < r.

We claim there exists a j < p+ q so that [xr+j ]A1112 < 0. First, note that

qr > pr = (p− 1)r + r > (p− 1)(q + 1) + r = q(p− 1) + p− 1 + r ≥ q + p+ r − 1.

Thus, the sums involving xipr and xiqr do not contribute to the coefficient of xr+j in A1112 when j < p + q.
However, it is possible the sum involving xipq is involved. We proceed by cases based on how pq is related to r.

Case 1: Suppose pq > r. Pick j = max(p+ q − r, 0). Note this is zero if and only if p+ q ≤ r. Additionally, since
p+ q < pq, we always have r + j < pq. Thus,

[xr+j ]A1112 = [xr+j ]

(
−xp(r + j − p+ 1)xr+j−p − xq(r + j − q + 1)xr+j−q − xr(j + 1)xj

+ (r + j + 1)xr+j + xpxq(r + j − p− q + 1)xr+j−p−q
)

= −(j + 1).
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Case 2: Now we suppose that pq < r. Note necessarily we have p+ q < r. Observe that so long as j < p+ q, we
have

[xr+j ]A1112 = [xr+j ]

(
−xp(r + j − p+ 1)xr+j−p − xq(r + j − q + 1)xr+j−q − xr(j + 1)xj

+ (r + j + 1)xr+j + xpxq(r + j − p− q + 1)xr+j−p−q

+

b r+j
pq c∑
i=0

xipq(r + j − ipq + 1)xr+j−ipq

−
b r+j−p

pq c∑
i=0

xpxipq(r + j − p− ipq + 1)xr+j−p−ipq

−
b r+j−q

pq c∑
i=0

xqxipq(r + j − q − ipq + 1)xr+j−q−ipq
)

= −(j + 1) +

b r+j
pq c∑
i=0

(r + j − ipq + 1)−
b r+j−p

pq c∑
i=0

(r + j − p− ipq + 1)

−
b r+j−q

pq c∑
i=0

(r + j − q − ipq + 1).

Observe the interval of integers [r+ j− p− q, r+ j] has length p+ q. Thus, there exists an integer j ≤ p+ q,
chosen minimally, for which⌊

r + j − p− q
pq

⌋
=

⌊
r + j − q

pq

⌋
=

⌊
r + j − p

pq

⌋
=

⌊
r + j

pq

⌋
since p+ q < pq. Note however that j 6= p+ q, as this otherwise implies that r is not prime, so it must be that
j < p+ q. In this case, the above reduces to

−(j + 1)−
b r+j−p−q

pq c∑
i=0

(r + j − p− q − ipq + 1).

The terms of the sum indexed by i are always positive due to the upper bound on i. Thus, the above is always
negative.

In light of the prior four Lemmas, we may conclude that all possible solutions correspond to one of the rows
in the following table.

cpq cpr cqr cpqr ↔ cpq cpr cqr cpqr
1 0 0 0 ↔ 1 2 2 2
1 1 0 0 ↔ 1 1 2 2
1 1 0 1 ↔ 1 1 2 1
2 1 0 1 ↔ 0 1 2 1
1 1 1 1 ↔ 1 1 1 1

Table 8: The solutions for two dice in the pqr case.

Theorem 5.1. Table 8 has the complete set of solutions (up to symmetry) in the case of two dice with sides
pqr, where p, q, and r are distinct prime numbers. In particular, there are 25 solutions, with 13 possible pairs
of dice.

Proof. The first four rows in the corresponding table each give three unique pairs of solutions by considering
all rearrangements of the values for cpq, cpr, cqr.

Example 5.1. The smallest example of the case in this section corresponds to 30 = 2 · 3 · 5. As these dice
have many labels, instead of writing a number multiple times in a list, we will use the notation n(k) to notate
n, n, ..., n (where n appears k times). The following is a complete list of labelings for this case.

The following come from the first row of Table 8.
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• 1, 2(2), 3(3), 4(4), 5(5), 6(5), 7(4), 8(3), 9(2), 10 and
1, 6, 7, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 38, 39, 40, 44, 45, 50

• 1, 2(2), 3(3), 4(3), 5(3), 6(3), 7(3), 8(3), 9(3), 10(3), 11(2), 12 and
1, 4, 7, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 38, 39, 42, 45, 48

• 1, 2(2), 3(2), 4(2), 5(2), 6(2), 7(2), 8(2), 9(2), 10(2), 11(2), 12(2), 13(2), 14(2), 15(2), 16 and
1, 3, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 44

The following come from the second row of Table 8.

• 1, 2, 3(2), 4(2), 5(3), 6(3), 7(3), 8(3), 9(3), 10(3), 11(2), 12(2), 13, 14 and
1, 2, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 39, 40, 45, 46

• 1, 2, 3, 4(2), 5(2), 6(2), 7(2), 8(2), 9(2), 10(2), 11(2), 12(2), 13(2), 14(2), 15(2), 16, 17, 18 and
1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 35, 36, 40, 41, 42

• 1, 2, 3, 4, 5, 6(2), 7(2), 8(2), 9(2), 10(2), 11(2), 12(2), 13(2), 14(2), 15(2), 16, 17, 18, 19, 20 and
1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40

The following come from the third row of Table 8.

• 1, 2(2), 3(3), 4(3), 5(3), 6(2), 7, 16, 17(2), 18(3), 19(3), 20(3), 21(2), 22 and
1, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 38

• 1, 2(2), 3(2), 4(2), 5(2), 6, 11, 12(2), 13(2), 14(2), 15(2), 16, 21, 22(2), 23(2), 24(2), 25(2), 26 and
1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34

• 1, 2(2), 3(2), 4, 7, 8(2), 9(2), 10, 13, 14(2), 15(2), 16, 19, 20(2), 21(2), 22, 25, 26(2), 27(2), 28 and
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32

The following come from the fourth row of Table 8.

• 1, 2, 3(2), 4(2), 5(3), 6(2), 7(2), 8, 9, 16, 17, 18(2), 19(2), 20(3), 21(2), 22(2), 23, 24 and
1, 2, 6, 7(2), 8, 11, 12(2), 13(2), 14, 17, 18(2), 19(2), 20, 23, 24(2), 25(2), 26, 29, 30(2), 31, 35, 36

• 1, 2, 4, 5, 7, 8, 10, 11(2), 12, 13, 14(2), 15, 17, 18, 20, 21(2), 22, 23, 24(2), 25, 27, 28, 30, 31, 33, 34 and
1, 2, 3(2), 4, 5(2), 6, 7(2), 8, 9(2), 10, 11, 16, 17, 18(2), 19, 20(2), 21, 22(2), 23, 24(2), 25, 26

• 1, 2, 6, 7(2), 8, 11, 12(2), 13(2), 14, 17, 18(2), 19(2), 20, 23, 24(2), 25(2), 26, 29, 30(2), 31, 35, 36 and
1, 2, 3(2), 4(2), 5(3), 6(2), 7(2), 8, 9, 16, 17, 18(2), 19(2), 20(3), 21(2), 22(2), 23, 24

6. Solutions with Different Size

In this section, we explore Question 1.4, which investigates if it is possible to find solutions that do not have
the same size as the original two standard m-sided dice. We have the following.

Theorem 6.1. Let m = ab, where a and b are positive integers. Then in the case where we have 2 dice with
size m, we have solutions with sizes a and ab2 whose generating functions are given by

x(xa − 1)

x− 1

and
x(xm − 1)2

(xa − 1)(x− 1)
.

respectively.

Proof. Taking the product of these functions, we get(
x(xa − 1)

x− 1

)(
x(xm − 1)2

(xa − 1)(x− 1)

)
=

(
x(xm − 1)

(x− 1)

)2

,

which is the frequency polynomial for two m sided dice. Thus, we need only demonstrate that(
x(xm − 1)2

(xa − 1)(x− 1)

)
has non-negative coefficients. Notice that

x(xm − 1)2

(xa − 1)(x− 1)
=

(
x(xa − 1)

x− 1

)(
xm − 1

xa − 1

)2

=

(
a∑
i=1

xi

)(
b−1∑
i=0

xia

)2

,

which has positive coefficients. Observe evaluating this polynomial at x = 1 gives ab2 as desired.
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Further computations allow us to explicitly describe the labels on the dice.

Corollary 6.1. Let m = ab with a and b non-negative integers. Consider a dice size ab2 who labels come from
{1, 2, . . . , 2m− a} in the following way:

1. the numbers (i− 1)a+ 1, (i− 1)a+ 2, . . . , ia, 2m− (i+ 1)a+ 1, 2m− (i+ 1)a+ 2, . . . , 2m− ai each appear
i times on the dice for 1 ≤ i ≤ b− 1; and

2. the numbers m− a+ 1,m− a+ 2, . . . ,m appear b times on the dice.

This dice, along with a standard a-sided dice, has the same frequencies of sums as two standard m-sided
dice.

Proof. This follows from the prior Theorem provided the polynomial corresponding to

x(xm − 1)2

(xa − 1)(x− 1)

is the generating function for the dice of size ab2. Continuing from the prior Theorem’s proof, we have

x(xm − 1)2

(xa − 1)(x− 1)
=

(
a∑
i=1

xi

)(
b−1∑
i=0

xia

)2

= x

(
b−1∑
i=0

xia

)2

+ x2

(
b−1∑
i=0

xia

)2

+ · · ·+ xa

(
b−1∑
i=0

xia

)2

.

Let us denote cj(x) := xj

(
b−1∑
i=0

xia

)2

, and so the above is
a∑
j=1

cj . Observe that

cj(x) = xj + 2xj+a + 3xj+2a + · · ·+ bxj+m−a + (b− 1)xj+m + · · ·+ xj+2m−2a.

Thus

a∑
j=1

cj =

b∑
i=1

a∑
j=1

ixj+ai−a +

b−1∑
i=1

a∑
j=1

(b− i)xj+m+ia,

which is the generating function for the aforementioned dice.

Remark 6.1. At the end of [5], the origin of Question 1.4, they mentioned as an example that one can have
a four-sided dice with labels 1, 1, 4, 4 and a nine-sided dice labeled 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8. We
point out that our construction could not generate this solution, since neither 4 nor 9 are divisors of 6. Thus,
there is much room for further exploration here.

Example 6.1. We use the fact that 6 = 2 × 3 for an immediate application of the prior result. If we let
a = 3, and b = 2, the prior results give us two dice with sizes 3 and 12. These dice have the labels 1, 2, 3 and
1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9.

One can use the following frequency table to verify the sums of dice with the above sides yield the same sums
of two standard 6 sided dice.

1 2 3 4 4 5 5 6 6 7 8 9
1 2 3 4 5 5 6 6 7 7 8 9 10
2 3 4 5 6 6 7 7 8 8 9 10 11
3 4 5 6 7 7 8 8 9 9 10 11 12

This prior result surprisingly provides an alternative version of a known combinatorial identity. First, recall
Tn is the number of boxes in a triangular array with n rows and i boxes in row i. See figure 1.

Figure 1: The triangular arrays with 1, 2, and 3 rows. Thus, T1 = 1, T2 = 3, and T3 = 6.

The following is an established combinatorial identity, but we shall reprove it here.
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Proposition 6.1. If n ∈ N then
n2 = Tn + Tn−1.

Proof. Adding the formulas for Tn and Tn−1 together, we have
Tn = n + (n− 1) + (n− 2) + · · · + 1

+Tn−1 = 1 + 2 + · · · + (n− 1)
Tn + Tn−1 = n + n + n + · · · + n

= n2

A popular combinatorial way to interpret this identity is by witnessing that an n×n grid is made up of the
diagrams of Tn and Tn−1. See Figure 2

Figure 2: A visual proof that T2 + T3 = 32.

We now get the following Corollary to the prior result.

Corollary 6.2. If a ∈ N divides m ∈ N, so that m = ab for some integer b, we have

m2 = a2(Tb + Tb−1).

Proof. Let P (x) :=
x(xm − 1)2

(xa − 1)(x− 1)
. When written as a Taylor series, we see that P (1) = ab2 = m2

a . On the

other hand, using the prior proof to express P (x) as

P (x) =

b∑
i=1

a∑
j=1

ixj+ai +

b−1∑
i=1

a∑
j=1

(b− i)xj+m−a+ia,

note that the coefficients of the first ab terms sum to aTb, while the remaining a(b − 1) terms sum to aTb−1.
Thus, we have demonstrated

m2

a
= aTb + aTb−1,

and so
m2 = a2(Tb + Tb−1).

Remark 6.2. This Corollary really is just a restatement of Proposition 6. Indeed, rather than multiplying by
a in the last step, one could have divided by a to get

b2 = Tb + Tb−1

which we already know is true. However, the new statement, as written, does have the following interesting
combinatorial interpretation: Since m = ab, one may split up a grid of m ×m squares into b × b squares, of
which there are a2 in total. Each of these b× b squares has b2 = Tb + Tb−1 squares. See Figure 3.

7. Different solutions for dice of different size

In this section, we report on the preliminary results of Question 1.5.

Proposition 7.1. Let p and q be prime numbers. There is no way to relabel dice of size p and q without
changing the frequencies of their sums.

Proof. The frequency polynomial for dice of size p and q is

F (x) =
x(xp − 1)

x− 1
· x(xq − 1)

x− 1
= x2 · φp · φq.

Since φp(1) = p and φq(1) = q, the only factorization of F (x) that gives solutions is the factorization into
polynomials xφp and xφq.
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↔

Figure 3: A visual proof that 4(T2 + T3) = 62. In this case, a = 2 and b = 3.

Remark 7.1. We originally conjectured that the prior result can be extended to two numbers which are relatively
prime, but thanks to communication with David Rusin, we discovered this is false. The frequency polynomial for
a 5 and 6 sided dice, for instance, can be factored into xφ5φ6 and xφ2φ3, and notably, both polynomials have
positive coefficients.

We have a preliminary result in the case where the numbers are not relatively prime.

Lemma 7.1. There are k ways to relabel a dice of size p and a dice of size pk, where p is prime.

Proof. The frequency polynomial in this case is

F (x) =
x(xp − 1)

x− 1

x(xp
k − 1)

x− 1
= x2φ2pφp2φp3 · · ·φpk .

Recall that φpi(1) = p for all i ≥ 1 and has non-negative coefficients. Thus, there are k different choices one
can make for the dice of size p, which determines the dice of size pk.

8. Revisiting dice with size pk

In this section, we wish to refine [5, Theorem 10]. We restate this result and include its proof here.

Theorem 8.1. There are exactly

(
2k − 1

k − 1

)
solution dice of size pk for all positive integers k and all prime

numbers p.

Proof. Consider a polynomial of the form

P (x) = x
∏

1≤i≤k

φpi(x)ci .

This polynomial is a solution so long as P (1) = pk, and since φpi(1) = p for all i ≥ 1, our solutions are in
bijection with non-negative integer solutions to

k∑
i=1

ci = k,

of which there are

(
2k − 1

k − 1

)
.

As a follow up to this result, we ask the following.

Question 8.1. Given n standard dice of size pk, how many other solution dice are there?

The reason this refines the question is because it is not necessarily the case that each of the aforementioned(
2k−1
k−1

)
solutions would be a solution for all possible values of n. In fact, the only time we can guarantee that all

of these are solution dice is if n ≥ k, as the above Theorem assumes that we always have enough dice available
for a dice to be considered a solution.∗ Indeed, if n < k, not all proposed solutions may be able to be combined
with n−1 other dice to give the same frequency distribution. This is demonstrated by the following Proposition,
for the case where n = 2.
∗This is a notion also explored by [5]. They call the game size of a dice to be the smallest number of dice needed for a given

dice to be considered a solution. This notion was not brought up in the discussion surrounding [5, Theorem 10], leaving some room
for further exploration.
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Proposition 8.1. For 2 dice of size pk, where p is prime, there are

b k
2 c∑
i=0

(
k

i

)(
k − i
i

)
solutions.

Proof. The frequency polynomial for 2 dice of size pk is(
x(xp

k − 1)

x− 1

)2

= x2 · φ2p · φ2p2 . . . φ2pk .

All solutions will have the form xc1 · φc2p · φ
c3
p2 · · ·φ

ck+1

pk
. We know c1 = 1 since every solution must have a single

factor of x because each die is required to have that minimum on one of its sides. Any solution with generating
function P (x) satisfies P (1) = pk since pk is the size of the two dice which we are trying to find more solutions
for. Thus, the solutions correspond to c2 + c3 + · · · + ck+1 = k, assuming that ci ≤ 2 since we only have two
dice in this case. Thus, solutions are in bijection with tuples in {0, 1, 2}k whose components sum to k. Given
i ≤ bk2 c, there are

(
k
i

)
ways of choosing where the 2’s appears in this tuple. From there, we must have k − 2i

positions with a 1. There are
(
k−i
k−2i

)
choices for where to place the 1’s. The remaining spots must be 0’s. Thus,

we’ve shown the number of solutions is precisely the sum given in the statement.

Table 9 compares the number of solutions for the 2 dice case versus those given in [5, Theorem 10].

k

b k
2 c∑
i=0

(
k

i

)(
k − i
i

) (
2k − 1

k − 1

)
1 1 1
2 3 3
3 7 10
4 19 35
5 51 126

Table 9: Comparing the number of actual solutions for two dice with size pk with [5, Theorem 10]. Observe the
values disagree if and only if k > 2.

We can generalize this beyond the case where n = 2, though we do not necessarily get a concise formula as
we did above.

Proposition 8.2. Suppose we have n dice of size pk. If n < k, then the number of solutions is precisely

[xk](1 + x+ x2 + · · ·+ xn)k.

Proof. As before, we consider possible choices of c1, . . . , ck so that

x

k∏
i=1

(
φpi(x)

)ci
is a solution. Recall that φpi(1) = p for all i ≥ 1, so the solutions are in bijections with non-negative solutions
to

c1 + c2 + · · ·+ ck = k

where ci ≤ n. Such solutions are enumerated by the statement of this proposition.

This provides an alternative proof of Proposition 8.1.

Corollary 8.1. The number of solutions for 2 dice of size pk is

b k
2 c∑
i=0

(
k

i

)(
k − i
i

)
.
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Proof. Using the Binomial Theorem, we have

(1 + x+ x2)k =

k∑
i=0

(
k

i

)
(1 + x)k−ix2i =

k∑
i=0

(
k

i

)
x2i

k−i∑
j=0

(
k − i
j

)
xk−i−j =

k∑
i=0

i∑
j=0

(
k

i

)(
k − i
j

)
xk+i−j .

Thus, the coefficient of [xk] for this polynomial is found when i = j, yielding

k∑
i=0

(
k

i

)(
k − i
i

)
.

Note the terms with i >
⌊
k
2

⌋
are all 0 due to the second binomial.

Remark 8.1. The sum given in the prior Corollary is referred to as the “central trinomial coefficient” since is
the middle term of (1 + x+ x2)k.

A. Rational Function Simplifications

In this section, we provide work to help justify the simplification of certain products of cyclotomic polynomials
given in sections 4 and 5.

A.1 Computations for Section 4

A1102 = φqφpφp2φ
2
p2q

=
1− xq

1− x
1− xp

1− x
1− xp2

1− xp
(1− xp)2(1− xp2q)2

(1− xp2)2(1− xpq)2

= (1− xq)(1− xp)2(1− xp
2q)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xip
2

)( ∞∑
i=0

xipq

)2

A2022 = φqφ
2
pφ

2
pqφ

2
p2q

=
1− xq

1− x
(1− xp)2

(1− x)2
(1− xpq)2(1− x)2

(1− xp)2(1− xq)2
(1− xp)2(1− xp2q)2

(1− xp2)2(1− xpq)2

= (1− xp)2(1− xp
2q)2

( ∞∑
i=0

xi

)( ∞∑
i=0

xiq

)( ∞∑
i=0

xip
2

)2

A2012 = φqφ
2
pφpqφ

2
p2q

=
1− xq

1− x
(1− xp)2

(1− x)2
(1− xpq)(1− x)

(1− xp)(1− xq)
(1− xp)2(1− xp2q)2

(1− xp2)2(1− xpq)2

= (1− xp)3(1− xp
2q)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xip
2

)2( ∞∑
i=0

xipq

)
.

A.2 Computations for Section 5

A0222 = φpφqφrφ
2
prφ

2
qrφ

2
pqr

=
1− xp

1− x

1− xq

1− x

1− xr

1− x

(1− xpr)2(1− x)2

(1− xp)2(1− xr)2
(1− xqr)2(1− x)2

(1− xq)2(1− xr)2
(1− xpqr)2(1− xp)2(1− xq)2(1− xr)2

(1− xpq)2(1− xpr)2(1− xqr)2(1− x)2

= (1− xp)(1− xq)(1− xpqr)2

( ∞∑
i=0

xi

)( ∞∑
i=0

xir

)( ∞∑
i=0

xipq

)2

A0122 = φpφqφrφprφ
2
qrφ

2
pqr

=
1− xp

1− x

1− xq

1− x

1− xr

1− x

(1− xpr)(1− x)

(1− xp)(1− xr)

(1− xqr)2(1− x)2

(1− xq)2(1− xr)2
(1− xpqr)2(1− xp)2(1− xq)2(1− xr)2

(1− xpq)2(1− xpr)2(1− xqr)2(1− x)2

= (1− xp)2(1− xq)(1− xpqr)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xipr

)( ∞∑
i=0

xipq

)2

A2001 = φpφqφrφ
2
pqφpqr
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=
1− xp

1− x

1− xq

1− x

1− xr

1− x

(1− xpq)2(1− x)2

(1− xp)2(1− xq)2
(1− xpqr)(1− xp)(1− xq)(1− xr)

(1− xpq)(1− xpr)(1− xqr)(1− x)

= (1− xr)2(1− xpq)(1− xpqr)

( ∞∑
i=0

xi

)2( ∞∑
i=0

xipr

)( ∞∑
i=0

xiqr

)
A1112 = φpφqφrφpqφprφqrφ

2
pqr

=
1− xp

1− x

1− xq

1− x

1− xr

1− x

(1− xpq)(1− x)

(1− xp)(1− xq)

(1− xpr)(1− x)

(1− xp)(1− xr)

(1− xqr)(1− x)

(1− xq)(1− xr)

(1− xpqr)2(1− xp)2(1− xq)2(1− xr)2

(1− xpq)2(1− xpr)2(1− xqr)2(1− x)2

= (1− xp)(1− xq)(1− xr)(1− xpqr)2

( ∞∑
i=0

xi

)2( ∞∑
i=0

xipq

)( ∞∑
i=0

xipr

)( ∞∑
i=0

xiqr

)
.
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