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Abstract: Non-crossing and non-nesting permutations are variations of the well-known Stirling permutations.
A permutation π on {1, 1, 2, 2, . . . , n, n} is called non-crossing if it avoids the crossing patterns {1212, 2121} and
is called non-nesting if it avoids the nesting patterns {1221, 2112}. Pattern avoidance in these permutations
has been considered in recent years, but it has remained open to enumerate the non-crossing and non-nesting
permutations that avoid a single pattern of length 3. In this paper, we provide generating functions for those
non-crossing and non-nesting permutations that avoid the pattern 231 (and, by symmetry, the patterns 132,
213, or 312).
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1. Introduction and Background

Stirling permutations were defined by Gessel and Stanley in [11] to be permutations π of the multiset
{1, 1, 2, 2, . . . , n, n} that avoid the pattern 212. In other words, for any such permutation π and indices i < j < k,
if πi = πk, then we must have πj > πi. In [11], they find that the number of such permutations is (2n− 1)!! and
that their descent polynomials are closely related to the well-known Stirling polynomials (hence their name).
Results regarding pattern-avoiding Stirling permutations and variants of Stirling permutations can be found
in [4, 13–15,17], among others.

Stirling permutations are naturally in bijection with increasing ordered rooted trees (see, for example, [12]).
The authors in [2] removed the increasing condition and asked how this would affect the corresponding permu-
tations. They found that ordered rooted labeled trees are in bijection with a variation of Stirling permutations
called non-crossing permutations (also called quasi-Stirling permutations), which avoid the “crossing” patterns
1212 and 2121. Additionally, non-nesting permutations (also called canon permutations), introduced in [6] as
a variation of non-crossing permutations, are those that avoid the “nesting” patterns 1221 and 2112. Both the
non-crossing and non-nesting permutations on {1, 1, 2, 2, . . . , n, n} are enumerated by n!Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number.

This fact is easily explained by a bijection between these permutations and certain labeled matchings.
Indeed, such a permutation π of {1, 1, 2, 2, . . . , n, n} can be viewed as a labeled matching of [2n], by placing an
arc with label ` between i and j if πi = πj = `. From this viewpoint, the labeled matchings associated with the
non-crossing and non-nesting permutations, respectively, avoid the matchings pictured below:

a b a b a b b a

Thus, the non-nesting permutations are in bijection with labeled non-nesting matchings, while the non-crossing
permutations are in bijection with labeled non-crossing matchings. It is well-known [19] that the number of
non-crossing matchings and the number of non-nesting matchings are both equal to Cn, and one can assign
labels to the matchings in n! ways.

Pattern avoidance in these patterns appears to have some interesting applications. In the non-nesting case,
Elizalde and Luo [8] explain that there is a relationship to deformations of the braid arrangement (see [3]).
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In [6, 7], the descent distribution (occurrences of the consecutive 21 pattern) in non-nesting permutations was
shown to have an interesting relationship to the Naryana numbers and was used to prove a conjecture about
lattice paths. In [5], Elizalde showed that the descent distribution in non-crossing permutations can be expressed
as a compositional inverse of the generating function of Eulerian polynomials. In [9], the authors extended the
result in [5] to prove a partial γ-positivity conjecture and find a bijective proof of an identity originally due
to Yan and Zhu [20]. In the non-crossing case, as mentioned above, these permutations are closely related to
labeled rooted ordered trees. One can more generally relate pattern avoidance in the permutation with pattern
avoidance in the tree (for example, see Section 5).

In [2], Archer et. al. enumerate non-crossing permutations that avoid any set of at least two elements from
S3. In [8], Elizalde and Luo prove analogous results in the non-nesting case. In both papers, the authors
pose the question of determining the number of non-crossing ( [2, Section 5]) and non-nesting ( [8, Problem
1]) permutations avoiding a single pattern in S3. In this paper, we resolve one of the two cases of these open
questions for both non-crossing and non-nesting permutations.

We denote by Pn(σ) and P̄n(σ) the set of non-nesting and non-crossing permutations, respectively, which
avoid σ ∈ S3. We let pn(σ) = |Pn(σ)| and p̄n(σ) = |P̄n(σ)| and we denote their respective generating functions
as

P (x) =
∑
n≥0

pn(231)xn and P̄ (x) =
∑
n≥0

p̄n(231)xn.

In our two main results, we provide generating functions for non-nesting and non-crossing permutations that
avoid the pattern 231 (and, by symmetry, the patterns 132, 213 or 312).

In Section 2, we address the non-nesting case, and in Section 3, we address the non-crossing case, proving
the following theorems.

Theorem 2.2. The generating function P (x) is given implicitly by the equation:

x3P (x)3 − (x3 + 3x2 + x)P (x)2 + (2x2 − x+ 1)P (x) + x− 1 = 0.

Theorem 3.1. The generating function P̄ (x) is given implicitly by the equation:

x2P̄ (x)4 − (x2 + x)P̄ (x)3 − xP̄ (x)2 + (x+ 1)P̄ (x)− 1 = 0.

In Section 4 we enumerate non-crossing permutations avoiding 122, as well as 122 and σ for σ ∈ S3. Similar
results for non-nesting permutations appear in [8]. We conclude with some open questions, the primary one
among them being the question of enumerating non-nesting and non-crossing permutations avoiding 321.

2. Non-Nesting Permutations avoiding 231

Let pn(231) = |Pn(231)| denote the number of non-nesting permutations that avoid 231, let qn(231) be the
number that begin with π1 = 1 and let rn(231) denote the number that end with π2n = n. We note that
this means q0(231) = r0(231) = 0. We begin with some necessary lemmas concerning the positions of n in the
permutation, which corresponds to the n-arc in the associated matching.

Lemma 2.1. Given π ∈ Pn(231), if πi = n and πj = n with i < j, there is at most one arc terminating between
i and j, and at most one arc originating between i and j.

Proof. First, note that there cannot be an arc that both originates and terminates between i and j because π
is non-nesting. Suppose there are two arcs that terminate between the two occurrences of n. If so, there are
two elements a, b with πk1 = πk2 = a and π`1 = π`2 = b where k1 < `1 < i < k2 < `2 < j since π is non-nesting.
If a < b then π`1πiπk2

= bna is a 231 pattern, and if a > b then πk1
πiπ`2 = anb is a 231 pattern.

A similar argument shows that there is at most one arc originating between the two occurrences of n. If
not, π contains abnab where this n is the second occurrence of n, which again produces a 231.

Lemma 2.2. Given π ∈ Pn(231), with πi = n and πj = n, i < j,

• if πk1 = πk2 = a with k1 < i < k2 < j, then a is the maximal element to the left of position i, and

• if πk1
= πk2

= a with i < k1 < j < k2, then a is the minimal element to the right of position j.

Proof. There are at least two arcs that originate before i, otherwise the statement is trivially true. Now, suppose
for the sake of contradiction that there are at least two arcs that originate before i and the first bullet point is
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not true. If a is not maximal, there is some b appearing before position i that is larger than a. In this case, π
contains bna, which is a 231 pattern.

Similarly, if an element originates between the two occurrences of n, but is not minimal, there is some
element b to the right of j with a > b in which case anb is a 231 pattern.

We are now ready to prove our functional equation relating the generating functions P (x), Q(x) and R(x),
where

P (x) =

∞∑
n=0

pn(231)xn, Q(x) =

∞∑
n=1

qn(231)xn, and R(x) =

∞∑
n=1

rn(231)xn.

Theorem 2.1. The generating functions P (x), Q(x), and R(x) satisfy the functional equation:

P (x) = 2xR(x)Q(x) + xP (x)Q(x) + xR(x)P (x) + xP (x)2 + 1.

Proof. We will prove that for n ≥ 3,

pn(231) = 2

n−2∑
k=1

rk(231)qn−k−1(231) +

n−2∑
k=0

pk(231)qn−k−1(231)

+

n−1∑
k=1

rk(231)pn−k−1(231) +

n−1∑
k=0

pk(231)pn−k−1(231)

with p0(231) = 1, p1(231) = 1, and p2(231) = 4. This will immediately imply the desired functional equation.
Given a permutation π ∈ Pn(231), each summand comes from considering the two possible positions of n.

There are four options determined by whether an arc originates or terminates inside the n-arc, since by Lemma
2.1 there is at most one arc that terminates and at most one that originates inside the n-arc.

First consider the case where there is both a terminal and an originating arc inside the n-arc. So that
π = a1 · · · a2k−1na2kb1nb2 · · · b2(n−k−1) or π = a1 · · · a2k−1nb1a2knb2 · · · b2(n−k−1), where a2k is a terminal entry
and b1 is an initial entry. Throughout this proof, all the elements of a1 · · · a2k are necessarily less than those of
b1 · · · b2(n−k−1) so that π avoids 231.

We must have that a2k is maximal among all the ai by Lemma 2.2 since it terminates inside the n-arc.
Similarly, b1 must be minimal among all the bi. As a result, there are rk choices for a1 · · · a2k and qn−k−1
choices for b1 · · · b2(n−k−1). The two arcs under the n-arc could also cross meaning a2k appears after b1, or a2k

could appear before b1, leaving us with 2
∑n−2

k=1 rk(231)qn−k−1(231) such 231 avoiding non-nested permutations.
We next consider the case π = a1 · · · a2knb1nb2 · · · b2(n−k−1), where there is only an arc originating between

the n-arc, but not one terminating there. In this case a1 · · · a2k can be any 231 avoiding non-crossing permu-
tation, including the empty permutation, but b1 · · · b2(n−k−1) must again have b1 minimal among the bi’s by
Lemma 2.2. We also must have n− k − 1 ≥ 1 because we must have an entry, b1, between the n entries. This
leaves us with

∑n−2
k=0 pk(231)qn−k−1(231) such permutations.

Similarly, in the case that π = a1 · · · a2k−1na2knb1 · · · b2(n−k−1), b1 · · · b2(n−k−1) can be any 231 avoiding
non-crossing permutation, including the empty permutation, but a2k must be maximal among the ai’s and
k ≥ 1. This leaves us with

∑n−1
k=1 rk(231)pn−k−1(231) such permutations.

Finally, consider the case where π = a1 · · · a2k−1a2knnb1 · · · b2(n−k−1); there are no arcs originating or termi-
nating between the n-arc. Here a1 · · · a2k and b1 · · · b2(n−k−1) can be any 231 avoiding non-crossing permutations,

including the empty permutation, leaving us with
∑n−1

k=0 pk(231)pn−k−1(231) options.
This exhausts all possibilities, summing yields the stated recursion which gives the functional equation

among the corresponding generating functions.

Example 2.1. Consider the example π = 121632653454 with the following matching diagram:

1 2 1 6 3 2 6 5 3 4 5 4

This falls into the case where there are entries to the left and right of the largest entry, 6. There are also
arcs originating and terminating between the two occurrences of 6. So this permutation decomposes into a
permutation with two arcs ending in a 2: 1212, indicated in red, and a permutation with three arcs beginning
with a 3: 353454, indicated in blue.

1 2 1 6 3 2 6 5 3 4 5 4
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This is one of the permutations enumerated by r2q3. Notice, it would not create a 231 to swap the entries
between the two occurrences of 6, as seen below.

1 2 1 6 2 3 6 5 3 4 5 4

This also yields a valid 231-avoiding non-nesting permutation, which is why we must have a factor of 2 in
the first summand of Theorem 2.1.

We now need a better understanding of R(x) and Q(x) to get our implicit equation for P (x).

Lemma 2.3. For n ≥ 2, rn = pn−1 + rn−1 and r1 = 1. This implies

R(x) =
xP (x)

1− x
.

Proof. Given π ∈ Pn(231) with π2n = n, by Lemma 2.1 there is at most one arc that terminates between the
two occurrences of n, and no arc can originate because π2n = n and π is non-nesting.

This means that either π2n−1 = n or π2n−2 = n. In the first case, we clearly have pn−1 options because
the remaining permutation is 231-avoiding non-nesting. In the second case, we have rn−1 options by Lemma
2.2 because π2n−1 must be the maximal element to the left of position 2n− 2, forcing π2n−1 = n− 1, meaning
π1 . . . π2n−3π2n−1 ∈ Pn−1(231) with last entry equal to n− 1.

The result about the generating functions follows immediately from the recursion since R(x) = xP (x) +
xR(x).

Now, let r′n denote the 231-avoiding non-nested permutations with both π1 = 1 and π2n = n and denote its
corresponding generating function by

R′(x) =

∞∑
n=1

r′nx
n.

Lemma 2.4. For n ≥ 2, r′n = qn−1 + r′n−1 and r′1 = 1. Thus, we have

R′(x) =
x+ xQ(x)

1− x

Proof. The argument here is identical to the argument in Lemma 2.3, but now we always force π1 = 1. So if π is
a 231-avoiding non-nesting permutation with π1 = 1 and π2n = n we could have π2n−1 = n or π2n−2 = n. In the
first case, we get qn−1 permutations because the remaining entries form a 213-avoiding non-nesting permutation
that begins with 1. In the second case, we get r′n−1 permutations because the remaining elements form 231-
avoiding non-nesting permutation that begins with 1 and ends with n−1 by Lemma 2.2. We note that we consider
r′1 = 1 since π = 11 both begins and ends with the largest element. This shows R′(x) = xQ(x) + xR′(x) + x,
we need the additional x term because neither Q(x) and R′(x) have a constant term. The statement about
generating functions follows immediately.

Next, let us focus on those permutations with π1 = 1.

Lemma 2.5. The generating function Q(x) satisfies the following functional equation:

Q(x) = 2xR′(x)Q(x) + xQ(x)2 + xR′(x)P (x) + xQ(x)P (x) + x.

Proof. The argument is identical to that from Theorem 2.1, replacing all the first terms in each recursion with
their corresponding term that begins with 1.

We are now ready to prove the main result of this section.

Theorem 2.2. The generating function

P (x) =
∑
n≥0

pn(231)xn

is given implicitly by

x3P (x)3 − (x3 + 3x2 + x)P (x)2 + (2x2 − x+ 1)P (x) + x− 1 = 0.

ECA 6:1 (2026) Article #S2R1 4
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Proof. Substituting R′(x) = x+xQ(x)
1−x from Lemma 2.4 into the identity in Lemma 2.5 and solving for P (x), we

get:

P (x) =
−x+ x2 +Q(x)− xQ(x)− 2x2Q(x)− xQ(x)2 − x2Q(x)2

x(x+Q(x))

Substituting R(x) = xP (x)
1−x from Lemma 2.3 into (??) and solving for Q(x), we obtain:

Q(x) =
−1 + x+ P (x)− xP (x)− xP (x)2

x(1 + x)P (x)

Finally, one can substitute this equation for Q(x) into the equation for P (x), and after simplifying, one obtains
the desired implicit equation.

We can use the functional equation in Theorem 2.2 to compute:

P (x) = 1 + x+ 4x2 + 17x3 + 77x4 + 367x5 + 1815x6 + 9233x7 + 48014x8 + 254123x9 + 1364491x10 + · · ·

with more coefficients found at [16, A383770]

Remark 2.1. If you solve for P (x) explicitly, the following radical appears:√
−x8 + 4x9 − 2x10 + 92x11 + 47x12 − 140x13 − 76x14 + 16x15 − 8x16.

The polynomial under the radical has a minimal root of 0.161809, giving a growth rate of 1
0.161809 ≈ 6.1801 for

pn(231). For example, we note that p250/p249 ≈ 6.143. The largest growth rate for non-nesting permutations
avoiding two patterns in S3 was 3 [8].

3. Non-crossing permutations avoiding 231

Let p̄n = p̄n(231) be the number that avoid 213 and let q̄n be the number that start with π1 = 1.

Lemma 3.1. For n ≥ 1,

p̄n =

n∑
k=2

k−1∑
i=1

p̄ip̄n−kp̄n−k−1−i +

n∑
k=1

p̄k−1q̄n+1−k

where p̄0 = 1.

Proof. Let us consider those permutations that start with π1 = k for some k. Since π avoids 231, all elements
less than k must appear in the permutation before all elements greater than k. Let us consider two cases.

First, suppose π = kABkC where every element of A is less than k, which implies that the elements of B and
C are exactly those that are greater than k. Notice that A can be any non-crossing permutation of semi-length
k − 1 and kBkC is any non-crossing permutation of semi-length n − k that starts with its smallest element.
Thus there are a total of p̄k−1q̄n−k non-crossing 231-avoiding permutations of this form for any 1 ≤ k ≤ n.

Next, suppose π = kAkBC where every element of C is greater than k, which implies that the elements of
A and B are exactly composed of those elements that are less than k. Furthermore, suppose B is nonempty so
there is no overlap with the previous case. Since π avoids 231, it must be that the elements of B are greater
than those of A. Note also that A, B, and C are necessarily equivalent to non-crossing permutations themselves.
Letting i be the semilength of B, then we must have that there are

k−1∑
i=1

p̄n−k−i−1p̄ip̄n−k

permutations of this form.

Lemma 3.2. For n ≥ 1,

q̄k =
∑

p̄x1−1p̄x2−1 · · · p̄xk−1

where the sum is over all compositions x of n.

Proof. Suppose that π1 = 1 and πi = 1. Since π avoids 231, then we must have that π2 ≥ π3 ≥ · · · ≥ πi−1.
Furthermore, we can write π as

π = 1a1a1a2a2 . . . ak−1ak−11βkβk−1 . . . β1

where for each 1 ≤ j ≤ k, all elements of βj are less than aj−1 and greater than aj . Note that the βj can be
any 231-avoiding non-crossing permutation, and if aj = aj−1 − 1, then βj is empty. Since taking xi = |βi|+ 1
gives us a composition x of n, and the elements ai and those that appear in βi are forced by the inequalities
present, the result follows.

ECA 6:1 (2026) Article #S2R1 5
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Example 3.1. Let us demonstrate Lemma 3.2 with an example. Consider the permutation

π = 11773312246655488.

In this case a1 = 7 and a2 = 3, β3 = 22, β2 = 466554, and β1 = 88. Note that the associated composition is
2 + 4 + 2 since the sizes of β3, β2, and β1 are 1, 3, and 1, respectively.

Theorem 3.1. The generating function given by

P̄ (x) =
∑
n≥0

p̄n(231)xn

is given implicitly by the equation:

x2P̄ (x)4 − (x2 + x)P̄ (x)3 − xP̄ (x)2 + (x+ 1)P̄ (x)− 1 = 0.

Proof. If we let Q̄(x) =
∑
n≥0

q̄nx
n, then Lemma 3.1 tells us

P̄ (x) = xP̄ (x)P̄ (x)(P̄ (x)− 1) + P̄ (x)Q̄(x) + 1

and Lemma 3.2 tells us

Q̄(x) =
xP̄ (x)

1− xP̄ (x)
.

Solving for P̄ (x), we obtain the result.

We can use the functional equation in Theorem 3.1 to compute

P̄ (x) = 1 + x+ 4x2 + 19x3 + 102x4 + 590x5 + 3588x6 + 22617x7 + 146460x8 + 968520x9 + · · · .

with more coefficients found at [16, A383771].

Remark 3.1. Using Lagrange inversion, we can get the following formula for p̄n(231):

q̄n(213) =
1

n

n∑
j=0

n−j∑
r=0

n−1∑
m=0

m∑
`=0

6m−`

2n

(
n

j

)(
n− j
r

)(
m

`

)(
j/2

m

)(
2r +m+ `+ n

j + r −m− `− 1

)
.

If you solve for P̄ (x) explicitly, the following radical appears:√
−108x3 + 621x4 + 432x5 + 10206x6 + 432x7 + 621x8 − 108x9,

which has minimal root x = .12791, and 1/.12791 = 7.81774, which gives us the growth rate for p̄n(231). For
example, p̄300/p̄299 = 7.77875 and p̄600/p̄599 = 7.79822. Recall that the growth rate for non-nesting permutations
that avoid 231 is 6.1801, which implies that it is easier for a non-crossing permutation to avoid 231 than it is
for a non-nesting permutation to avoid 231.

4. Non-crossing permutations avoiding 122

Note that in [8], non-nesting permutations avoiding patterns with repeated elements were considered, but this
case was omitted for non-crossing permutations in [2]. Here, let us consider those non-crossing permutations
that avoid the pattern 122 (or equivalently, avoiding a single pattern in the set {112, 211, 221}), as well as
those that avoid both 122 and another pattern σ ∈ S3. We don’t consider the pattern 212 or 121 since this is
equivalent to Stirling permutations, whose pattern avoidance has already been well-studied.

Theorem 4.1. For n ≥ 1,
q̄n(122) = Cn

where Cn is the n-th Catalan number.

Proof. Start with any noncrossing matching and label left-to-right in a decreasing way. This will clearly avoid
122 since any subsequence baab or bbaa must have that a < b if we label according to this rule. If we label it
any other way, then we must have a a > b and thus a 122 pattern.

ECA 6:1 (2026) Article #S2R1 6



Kassie Archer and Robert P. Laudone

Theorem 4.2. For n ≥ 1,

q̄n(122, σ) =


Cn σ = 132

Fn+1 σ = 213

2n−1 σ ∈ {231, 123}
n σ = 312

and q̄n(122, 321) = 0 for n ≥ 3.

Proof. Let us first note that by the proof of Theorem 4.1, any non-crossing permutation that avoids 122 must
be obtained from labeling a non-crossing matching left-to-right in a decreasing way. In particular, for any i, the
first occurrence of i must appear before the first occurrence of i− 1.

It is clear that no such labeling could allow there to be a 132 pattern. Indeed, for any a < b < c, a 132
pattern would be of the form acb and thus c and b would be the second occurrence of that element. But then cbcb
would be a subsequence of π, contradicting that it is non-crossing. It follows that q̄n(122, 132) = q̄n(122) = Cn.

Let us consider those that avoid 213. If there are more than two distinct elements between the two occurrences
of n, they must appear in nondecreasing order (since π avoids 213) and so would form a 122 pattern. Thus every
permutation must begin with nn or n(n − 1)(n − 1)n, and so q̄n(122, 213) = q̄n−1(122, 213) + q̄n−2(122, 213).
Since q̄1(122, 213) = 1 and q̄2(122, 213) = 2, we have q̄n(122, 213) = Fn.

Now, let’s consider those that avoid 231. Note that these permutations must be of the form nAnB where
the elements of A are less than the elements of B. If both A and B are nonempty, then there is a subsequence
abb of π that forms a 122 pattern. Therefore either π2 = n or π2n = n. Since we can recursively obtain all
permutations of semilength n from those of semilength n − 1 by inserting nn at the beginning or by inserting
n at the front and n at the end, q̄n(122, 231) = 2q̄n−1(122, 231). Together with the fact that q̄1(122, 231) = 1,
we have q̄n(122, 231) = 2n−1.

Next, consider those that avoid 123. Notice we cannot have a nest with three elements, i.e., we cannot have
cbaabc as a subsequence for any a, b, c since we would have c > b > a and thus abc would be a 123 pattern.
Therefore, our permutation is composed of contiguous segments of the form i(i− 1)(i− 1)(i− 2)(i− 2) . . . (i−
k)(i−k)i and so these permutations are in bijection with compositions of n. It follows that q̄n(122, 123) = 2n−1.

Next, if π avoids 312, then since π1 = n, all other elements must appear in decreasing order. Thus π =
n(n− 1)(n− 1)(n− 2)(n− 2) . . . (n− k)(n− k)n(n− k − 1)(n− k − 1) . . . 2211 for some 0 ≤ k ≤ n− 1; which
proves q̄n(122, 312) = n.

Finally, any permutation avoiding 122 must eventually contain a 321 pattern, and so for n ≥ 3, we have
q̄n(122, 321) = 0.

5. Open Questions

There are many future directions for this research. In particular, it is still open to enumerate non-nesting and
non-crossing permutations that avoid the pattern 321. It is clear that both pn(321) and p̄n(321) are bounded
between Cn and C2

n, but enumerating them exactly seems to be challenging. It may be reasonable to consider
consecutive patterns as well, or to apply the methods in this paper to consider pattern avoidance in permutations
on more general multisets that avoid the crossing or nesting patterns.

We also note that, as stated in [2], there is a nice bijection between non-crossing permutations and labeled
rooted ordered trees. There has been some interest in pattern avoidance in unordered trees [1,10,18]. Studying
pattern avoidance in non-crossing permutations can help address the question of pattern avoidance in ordered
trees. In particular, the number of non-crossing permutations that avoid 23132 would be equal to the number
of labeled rooted ordered trees that avoid 231.

Disclaimer

The views expressed in this paper are those of the authors and do not reflect the official policy or position of the
U.S. Naval Academy, Department of the Navy, the Department of Defense, or the U.S. Government.
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