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Abstract: We combine Boolean arguments with language-theoretic tools to obtain a short, constructive, and
transparent proof (a book proof) of the result on the largest induced subgraphs of the n-cube that contain no
4-cycles.
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1. Introduction

We call a Boolean function F of n variables an ℓpi-function if all prime implicants of F have length at least n−1
(ℓpi stands for long prime implicants, see [2] for more general classes of Boolean functions). In this paper, we

show that an ℓpi-function of n variables has at most ⌈ 2n+1

3 ⌉ true points and that for each n there is a unique (up
to renaming and negating variables) function attaining this bound. Taking into account the bijection between
implicants of length n− k and subcubes of dimension k in the n-dimensional cube, we observe that a Boolean
function is an ℓpi-function if and only if the set of its true points induces in the n-cube a subgraph containing
no 4-cycles. Therefore, our paper presents an innovative proof, which is short, constructive and transparent,
for the result discovered independently in [3] and [4].

Let B = {0, 1}. We refer to the set Bn as a cube of dimension n, and to the elements of Bn as Boolean
points. We say that two Boolean functions F and G are congruent, denoted F ∼= G, if they are identical up to
renaming and negating variables. Let F be an n-variable Boolean function. A partition of F over a variable x
is a pair (F0, F1) of functions of n−1 variables such that F = xF0∨xF1, in which case F0 and F1 are said to be
the restrictions of F to x = 0 and x = 1, respectively, written as F0 = F|x=0 and F1 = F|x=1. Let (X

1, . . . , X2n)

be the Boolean points of Bn ordered lexicographically, then the word f = F (X1) . . . F (X2n) is the vector of
values of F . We denote the reverse of a word f by f∗ and the number of true points of F by |F |. For Boolean
terminology not defined here, we refer the reader to [1].

2. Extremal ℓpi-functions

We define inductively a sequence of Boolean functions An (n = 1, 2, . . .) on Bn. The definition is different for
odd and even values of n and involves an auxiliary function Bn. We define An and Bn via their vectors of values
denoted by an and bn, respectively:

n = 1: a1 = 11 and b1 = 10.
n > 1 even: an = an−1bn−1 and bn = bn−1b

∗
n−1.

n > 1 odd: an = a∗n−1an−1 and bn = an−1bn−1.

Lemma 2.1. An and Bn are ℓpi-functions for all n ≥ 1.

Proof. For any function F : Bn → B with an implicant of length at most n − 2, there is a restriction with an
implicant of length at most n−3. If F ∼= An or F ∼= Bn, then any restriction of F is congruent to An−1 or Bn−1

by definition of An and Bn and due to the notion of congruency. Therefore, the result follows by induction on
n, with small values of n being easily verifiable.
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Lemma 2.2. The functions An and Bn satisfy the following properties: (a) |Bn| = |An| − 1 for all values of n,

(b) |An| = 2n+1+1
3 for even n and |An| = 2n+1+2

3 for odd n.

Proof. From the definition of An and Bn, we know that |A1| = 2, |B1| = 1, |An| = |An−1| + |Bn−1|, |Bn| =
2|Bn−1| for even n, and |An| = 2|An−1|, |Bn| = |An−1| + |Bn−1| for odd n. This immediately implies (a) by
induction on n. Also, using these equalities and (a), we derive by induction on n that |An| = |An−1|+ |Bn−1| =
2n+2

3 + 2n+2
3 − 1 = 2n+1+1

3 for an even n, and |An| = 2|An−1| = 22n+1
3 = 2n+1+2

3 for an odd n, as required.

Theorem 2.1. For each value of n ≥ 1, An is the unique (up to renaming and negating variables) ℓpi-function
on Bn with the maximum number of true points.

Proof. We prove the theorem by induction on n. For n ≤ 2, the result can be checked by direct inspection.
From now on, we assume that n ≥ 3 and that the theorem is valid for values smaller than n. This implies that
for any ℓpi-function F on Bn with |F | = |An|,

(o) if n is odd, then any partition of F consists of two functions congruent to An−1,
(e) if n is even, then in any partition of F , one of the restrictions is congruent to An−1.

Now we prove a series of other claims for an ℓpi-function F on Bn.

(1) If n is odd and F is congruent to An, then the two functions congruent to An−1 in the partition of F , written
as words, are reverse of each other. This is because an is palindromic, i.e. An, and hence F , takes equal values
on opposite (complement) Boolean points.

(2) If n is odd and |F | = |An|, then F ∼= An. To see this, partition F over two variables and write it as a
word γ00γ01γ10γ11. By (o) and (e), two “opposite” subwords, say γ01 and γ10, represent functions congruent to
An−2, and each of the four words γ00γ01, γ00γ10, γ01γ11, γ10γ11 represents a function congruent to An−1. We
assume that γ01 = an−2 (by renaming and negating variables), which implies γ11 = bn−2 and γ10 = an−2. For
the word γ00γ01 to represent a function congruent to An−1, we must read it from right to left and conclude
that γ00 = b∗n−2 (remember that an−2 is palindromic). Hence, F can be written as b∗n−2an−2an−2bn−2 = an,
i.e. F ∼= An.

(3) If n is even and |F | = |An|, then F ∼= An. To prove this, we apply (e) to each of the n variables x1, . . . xn

to obtain n restrictions F|xi=αi
of F congruent to An−1. By renaming and negating variables, we may assume

that α1 = 0 and F|x1=0 = An−1 = An|x1=0. For all i > 1, since n− 1 is odd, we conclude that the two functions
F|x1=0,xi=αi

and F|x1=1,xi=αi
coincide, as each of them, written as a word, is the reverse of F|x1=0,xi=αi

by (1).
Thus, F coincides with An on all points but one, and since |F | = |An|, they must coincide on the remaining
point too.

(4) If n is even, then |F | < 2|An−1|. We partition F over two variables, write it as a word γ00γ01γ10γ11, and
assume the contrary: |F | ≥ 2|An−1| = 4|An−2|. Then each subword γij represents a function congruent to
An−2 (by induction) and γ00 = γ∗

01 = γ11 = γ∗
10 (by (1)). Therefore, among any four Boolean points (0, 0, α),

(0, 1, α), (1, 0, α), (1, 1, α) (α ∈ Bn−2), an even number of the points are true, and this number is different from
4, since otherwise a 4-cycle arises. Thus, |F | ≤ 2 · 2n−2 < 2 2n+2

3 = 2|An−1| ≤ |F |, which is a contradiction.

To finish the proof of the theorem, we consider an ℓpi-function F on Bn with the maximum number of true
points. By induction we know that for any partition (F1, F2) of F we have |F1| ≤ |An−1| and |F2| ≤ |An−1|.
If n is odd and |F | = 2|An−1| = |An|, then F ∼= An by (2). If n is even, then |F | < 2|An−1| by (4), and if
|F | = 2|An−1| − 1 = |An|, then F ∼= An by (3).
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