

Extremal Boolean Functions With Long Prime Implicants

Vadim Lozin

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
 Email: V.Lozin@warwick.ac.uk

Received: June 1, 2025, **Accepted:** January 17, 2026, **Published:** January 23, 2026

The authors: Released under the CC BY-ND license (International 4.0)

ABSTRACT: We combine Boolean arguments with language-theoretic tools to obtain a short, constructive, and transparent proof (a book proof) of the result on the largest induced subgraphs of the n -cube that contain no 4-cycles.

Keywords: Boolean function; Extremal property; Hypercube

2020 Mathematics Subject Classification: 05A05; 05D05

1. Introduction

We call a Boolean function F of n variables an *lpi*-function if all prime implicants of F have length at least $n - 1$ (*lpi* stands for *long prime implicants*, see [2] for more general classes of Boolean functions). In this paper, we show that an *lpi*-function of n variables has at most $\lceil \frac{2^{n+1}}{3} \rceil$ true points and that for each n there is a unique (up to renaming and negating variables) function attaining this bound. Taking into account the bijection between implicants of length $n - k$ and subcubes of dimension k in the n -dimensional cube, we observe that a Boolean function is an *lpi*-function if and only if the set of its true points induces in the n -cube a subgraph containing no 4-cycles. Therefore, our paper presents an innovative proof, which is short, constructive and transparent, for the result discovered independently in [3] and [4].

Let $\mathcal{B} = \{0, 1\}$. We refer to the set \mathcal{B}^n as a *cube of dimension n*, and to the elements of \mathcal{B}^n as *Boolean points*. We say that two Boolean functions F and G are *congruent*, denoted $F \cong G$, if they are identical up to renaming and negating variables. Let F be an n -variable Boolean function. A *partition of F over a variable x* is a pair (F_0, F_1) of functions of $n - 1$ variables such that $F = \bar{x}F_0 \vee xF_1$, in which case F_0 and F_1 are said to be the *restrictions* of F to $x = 0$ and $x = 1$, respectively, written as $F_0 = F|_{x=0}$ and $F_1 = F|_{x=1}$. Let (X^1, \dots, X^{2^n}) be the Boolean points of \mathcal{B}^n ordered lexicographically, then the word $f = F(X^1) \dots F(X^{2^n})$ is the *vector of values of F*. We denote the reverse of a word f by f^* and the number of true points of F by $|F|$. For Boolean terminology not defined here, we refer the reader to [1].

2. Extremal *lpi*-functions

We define inductively a sequence of Boolean functions A_n ($n = 1, 2, \dots$) on \mathcal{B}^n . The definition is different for odd and even values of n and involves an auxiliary function B_n . We define A_n and B_n via their vectors of values denoted by a_n and b_n , respectively:

$n = 1$: $a_1 = 11$ and $b_1 = 10$.

$n > 1$ even: $a_n = a_{n-1}b_{n-1}$ and $b_n = b_{n-1}b_{n-1}^*$.

$n > 1$ odd: $a_n = a_{n-1}^*a_{n-1}$ and $b_n = a_{n-1}b_{n-1}$.

Lemma 2.1. A_n and B_n are *lpi*-functions for all $n \geq 1$.

Proof. For any function $F : \mathcal{B}^n \rightarrow \mathcal{B}$ with an implicant of length at most $n - 2$, there is a restriction with an implicant of length at most $n - 3$. If $F \cong A_n$ or $F \cong B_n$, then *any* restriction of F is congruent to A_{n-1} or B_{n-1} by definition of A_n and B_n and due to the notion of congruency. Therefore, the result follows by induction on n , with small values of n being easily verifiable. \square

Lemma 2.2. *The functions A_n and B_n satisfy the following properties: (a) $|B_n| = |A_n| - 1$ for all values of n , (b) $|A_n| = \frac{2^{n+1}+1}{3}$ for even n and $|A_n| = \frac{2^{n+1}+2}{3}$ for odd n .*

Proof. From the definition of A_n and B_n , we know that $|A_1| = 2$, $|B_1| = 1$, $|A_n| = |A_{n-1}| + |B_{n-1}|$, $|B_n| = 2|B_{n-1}|$ for even n , and $|A_n| = 2|A_{n-1}|$, $|B_n| = |A_{n-1}| + |B_{n-1}|$ for odd n . This immediately implies (a) by induction on n . Also, using these equalities and (a), we derive by induction on n that $|A_n| = |A_{n-1}| + |B_{n-1}| = \frac{2^n+2}{3} + \frac{2^n+2}{3} - 1 = \frac{2^{n+1}+1}{3}$ for an even n , and $|A_n| = 2|A_{n-1}| = 2\frac{2^n+1}{3} = \frac{2^{n+1}+2}{3}$ for an odd n , as required. \square

Theorem 2.1. *For each value of $n \geq 1$, A_n is the unique (up to renaming and negating variables) ℓpi -function on \mathcal{B}^n with the maximum number of true points.*

Proof. We prove the theorem by induction on n . For $n \leq 2$, the result can be checked by direct inspection. From now on, we assume that $n \geq 3$ and that the theorem is valid for values smaller than n . This implies that for any ℓpi -function F on \mathcal{B}^n with $|F| = |A_n|$,

- (o) if n is odd, then any partition of F consists of two functions congruent to A_{n-1} ,
- (e) if n is even, then in any partition of F , one of the restrictions is congruent to A_{n-1} .

Now we prove a series of other claims for an ℓpi -function F on \mathcal{B}^n .

(1) *If n is odd and F is congruent to A_n , then the two functions congruent to A_{n-1} in the partition of F , written as words, are reverse of each other.* This is because a_n is palindromic, i.e. A_n , and hence F , takes equal values on opposite (complement) Boolean points.

(2) *If n is odd and $|F| = |A_n|$, then $F \cong A_n$.* To see this, partition F over two variables and write it as a word $\gamma_{00}\gamma_{01}\gamma_{10}\gamma_{11}$. By (o) and (e), two “opposite” subwords, say γ_{01} and γ_{10} , represent functions congruent to A_{n-2} , and each of the four words $\gamma_{00}\gamma_{01}$, $\gamma_{00}\gamma_{10}$, $\gamma_{01}\gamma_{11}$, $\gamma_{10}\gamma_{11}$ represents a function congruent to A_{n-1} . We assume that $\gamma_{01} = a_{n-2}$ (by renaming and negating variables), which implies $\gamma_{11} = b_{n-2}$ and $\gamma_{10} = a_{n-2}$. For the word $\gamma_{00}\gamma_{01}$ to represent a function congruent to A_{n-1} , we must read it from right to left and conclude that $\gamma_{00} = b_{n-2}^*$ (remember that a_{n-2} is palindromic). Hence, F can be written as $b_{n-2}^*a_{n-2}a_{n-2}b_{n-2} = a_n$, i.e. $F \cong A_n$.

(3) *If n is even and $|F| = |A_n|$, then $F \cong A_n$.* To prove this, we apply (e) to each of the n variables x_1, \dots, x_n to obtain n restrictions $F_{|x_i=\alpha_i}$ of F congruent to A_{n-1} . By renaming and negating variables, we may assume that $\alpha_1 = 0$ and $F_{|x_1=0} = A_{n-1} = A_{n|x_1=0}$. For all $i > 1$, since $n-1$ is odd, we conclude that the two functions $F_{|x_1=0, x_i=\bar{\alpha}_i}$ and $F_{|x_1=1, x_i=\alpha_i}$ coincide, as each of them, written as a word, is the reverse of $F_{|x_1=0, x_i=\alpha_i}$ by (1). Thus, F coincides with A_n on all points but one, and since $|F| = |A_n|$, they must coincide on the remaining point too.

(4) *If n is even, then $|F| < 2|A_{n-1}|$.* We partition F over two variables, write it as a word $\gamma_{00}\gamma_{01}\gamma_{10}\gamma_{11}$, and assume the contrary: $|F| \geq 2|A_{n-1}| = 4|A_{n-2}|$. Then each subword γ_{ij} represents a function congruent to A_{n-2} (by induction) and $\gamma_{00} = \gamma_{01}^* = \gamma_{11} = \gamma_{10}^*$ (by (1)). Therefore, among any four Boolean points $(0, 0, \alpha)$, $(0, 1, \alpha)$, $(1, 0, \alpha)$, $(1, 1, \alpha)$ ($\alpha \in \mathcal{B}^{n-2}$), an even number of the points are true, and this number is different from 4, since otherwise a 4-cycle arises. Thus, $|F| \leq 2 \cdot 2^{n-2} < 2\frac{2^n+2}{3} = 2|A_{n-1}| \leq |F|$, which is a contradiction.

To finish the proof of the theorem, we consider an ℓpi -function F on \mathcal{B}^n with the maximum number of true points. By induction we know that for any partition (F_1, F_2) of F we have $|F_1| \leq |A_{n-1}|$ and $|F_2| \leq |A_{n-1}|$. If n is odd and $|F| = 2|A_{n-1}| = |A_n|$, then $F \cong A_n$ by (2). If n is even, then $|F| < 2|A_{n-1}|$ by (4), and if $|F| = 2|A_{n-1}| - 1 = |A_n|$, then $F \cong A_n$ by (3). \square

References

- [1] Y. Crama and P. L. Hammer, *Boolean functions: Theory, algorithms, and applications*, Cambridge University Press, Cambridge, UK, 2011.
- [2] O. Čepek, P. Kučera, and S. Kuřík, *Boolean functions with long prime implicants*, Inform. Process. Lett. 113 (2013), no. 19-21, 698–703.
- [3] K. A. Johnson and R. Entringer, *Largest induced subgraphs of the n -cube that contain no 4-cycles*, J. Combin. Theory Ser. B 46 (1989), no. 3, 346–355.
- [4] E. A. Kostochka, *Piercing the edges of the n -dimensional unit cube*, (Russian) Diskret. Analiz 79 (1976), 55–64.