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1. Introduction

Juggling is an act of throwing and catching balls. Since the 1980s, juggling has been studied mathematically
by many researchers; for example, see [1–4,6–10,12,16,18] and references therein. We refer the reader to [4,15]
for the history of mathematics of juggling.

Juggling can be divided into two categories: simple juggling and multiplex juggling. In simple juggling, at
most one ball is caught and thrown at every beat. Multiplex juggling is a generalization of simple juggling,
where at most k balls are caught and thrown at every beat. The number k is called the (hand) capacity.

A simple juggling pattern is a bijection f : Z → Z such that f(i) ≥ i for all i ∈ Z. This can be understood
as the situation that a juggler catches a ball at beat i and throws it immediately so that it lands at beat f(i).
(If f(i) = i, then the juggler does not catch or throw any ball at beat i.) A simple juggling pattern is periodic
if the function h : Z → Z defined by h(i) = f(i)− i is periodic.

Buhler, Eisenbud, Graham, and Wright [4] showed that the number of simple juggling patterns with b balls
and period p is equal to (b + 1)p − bp. Ehrenborg and Readdy [10] found a simple proof of this result by
introducing juggling cards.

There are some models of multiplex juggling cards introduced by Ehrenborg–Readdy [10] and Butler–Chung–
Cummings–Graham [6]. However, they do not represent multiplex juggling patterns in a bijective way. In 2019,
Butler, Choi, Kim, and Seo [5] introduced a new type of card that represents multiplex juggling patterns in a
natural bijective way. We refer the reader to [5] for more details.

In this paper, we study enumerative properties of the number of multiplex juggling card sequences. We
consider three natural parameters of multiplex juggling card sequences: the number b of balls, the capacity k,
and the length ℓ of a sequence of cards. Let J(b, k, ℓ) denote the number of multiplex juggling card sequences
with given parameters k, b, and ℓ. See Section 2 for the precise definition.

*The authors are listed in alphabetical order, as is customary in mathematics, and contributed equally to this work.
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Now we review some known results on the number J(b, k, 1) of multiplex juggling cards with b balls and
capacity k. If k = 1, it is immediate from the definition that∑

b≥0

J(b, 1, 1)xb =
∑
b≥0

(b+ 1)xb =
1

(1− x)2
.

For the other extreme case k = ∞, Butler et al. [5, Theorem 4] showed that the sequence {J(b,∞, 1)}b≥0

satisfies the following simple linear recurrence: J(0,∞, 1) = 1, J(1,∞, 1) = 2, J(2,∞, 1) = 7, and for b ≥ 3,

J(b,∞, 1) = 4J(b− 1,∞, 1)− 2J(b− 2,∞, 1). (1)

By the standard method for linear recurrences, see [17, Theorem 4.1.1], one can easily check that the recursion (1)
is equivalent to ∑

b≥0

J(b,∞, 1)xb =
1− 2x+ x2

1− 4x+ 2x2
. (2)

For the case k = 2, Butler et al. [5, Conjecture 13] conjectured the following generating function formula:∑
b≥0

J(b, 2, 1)xb =
1− x+ x2 + x3

(1− x− x2)3
. (3)

In this paper, we prove this conjecture; see Example 3.7. More generally, we find an explicit formula for the
generating function

∑
b≥0 J(b, k, 1)x

b for any capacity k; see Corollary 3.9. We also find an expression for∑
b≥0

J(b, k, ℓ)xb (4)

for any capacity k and length ℓ by introducing a generalization of the q-derivative operator; see Theorem 4.5.
As a consequence, we show that the generating function (4) is a rational function in x.

The rest of this paper is organized as follows. In Section 2 we provide necessary definitions. In Section 3
we study the generating function (4) for the case ℓ = 1. In Section 4 we study the generating function (4) for a
general ℓ. In Section 5 we show that (4) is a rational function in x. In Section 6 we summarize our results and
propose some open problems.

2. Preliminaries

In this section, we give the necessary definitions. Throughout this paper we will use the notation [n] = {1, . . . , n}
for a positive integer n.

Definition 2.1. A composition is a sequence α = (α1, . . . , αr) of positive integers. Each αi is called a part
of α. The size |α| of α is defined by |α| = α1 + · · ·+ αr. If |α| = n, we say that α is a composition of n. The
length ℓ(α) of α is defined to be the number of parts in α. We denote by Comp(n) the set of compositions of n.
We also denote by Comp(n, k) the set of compositions of n with k parts.

Definition 2.2. A (multiplex juggling) card is a triple (α, β, f) such that α = (α1, . . . , αr) and β = (β1, . . . , βs)
are compositions with |α| = |β|, and f : [r] → {0} ∪ [s] is a strictly increasing function satisfying αi ≤ βf(i) for
all i ∈ [r] with f(i) ̸= 0. We call α and β the arrival composition and the departure composition of the card,
respectively. If every part of α and β is at most k, then we say that the card has capacity k. We also say that
the card has |α| balls.

We can visualize a card (α, β, f) as follows. Suppose α = (α1, . . . , αr) and β = (β1, . . . , βs). Consider a
rectangle with r vertices on the left side labeled α1, . . . , αr from bottom to top, s vertices on the right side
labeled β1, . . . , βs from bottom to top, and a vertex on the bottom side called the ground vertex. If f(1) ̸= 0,
then it follows from Definition 2.2 that we must have r = s and f(i) = i for all i ∈ [r]. In this case, draw a
curve from vertex αi to vertex βi for all i ∈ [r]. If f(1) = 0, then draw a curve from vertex α1 to the ground
vertex, a curve from vertex αi to vertex βf(i) for each i ∈ {2, 3, . . . , r}, and a curve from the ground vertex to
each vertex βj such that either j = f(i) for some i ∈ [r] with αi < βj or j is not in the image of f .

Such a visualization can be understood as αi balls entering the card on level i and βj balls leaving the card
on level j. Note that if f(1) ̸= 0 then all balls stay in the air, and if f(1) = 0 then α1 balls are caught and
thrown again, so that these balls are redistributed.

Example 2.3. Let (α, β, f) be the card such that α = (4, 2, 3), β = (4, 2, 3), and f : {1, 2, 3} → {0, 1, 2, 3} is
the function given by f(1) = 1, f(2) = 2, and f(3) = 3. Then the card can be visualized as the left diagram in
Figure 1.
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Example 2.4. Let (α, β, f) be the triple such that α = (6, 1, 2, 2), β = (3, 1, 2, 3, 2), and f : {1, 2, 3, 4} →
{0, 1, 2, 3, 4, 5} is the function given by f(1) = 0, f(2) = 1, f(3) = 3, and f(4) = 4. Then the card can be
visualized as the right diagram in Figure 1.
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Figure 1: The left diagram is a visualization of the card in Example 2.3. The right diagram is a visualization
of the card in Example 2.4.

One multiplex juggling card represents a situation of multiplex juggling at a given moment, say at beat i.
We say that two juggling cards (α, β, f) and (α′, β′, f ′) are compatible if β = α′. By listing ℓ compatible cards,
we can represent a situation of multiplex juggling from beats 1 to ℓ. To be more precise, we introduce the
following definition.

Definition 2.5. An ℓ-card sequence with b balls and capacity k is a sequence (C1, . . . , Cℓ) of ℓ cards with b balls
and capacity k such that the departure composition of Ci is equal to the arrival composition of Ci+1 for all
i ∈ [ℓ − 1]. We denote by J (b, k, ℓ) the set of ℓ-card sequences with b balls and capacity k. We also define
J(b, k, ℓ) = |J (b, k, ℓ)|.

For example, see Figure 2.

4

2

3

4

3

2

4

3

2

2

3

3

1

2

3

3

1

2

3

3

1

2

3

3

1

4

3

1

1

Figure 2: An example of a 4-card sequence.

3. Juggling cards with fixed capacity

In this section, we provide three expressions for the generating function∑
b≥0

J(b, k, 1)xb (5)

with fixed capacity k. To this end, we give another description of a card using embeddings introduced in [5].
Recall that J (b, k, 1) is the set of all cards with b balls and capacity k. We use the notation rs to denote

the word consisting of s r’s.

Definition 3.1. A (b, k)-embedding is a sequence γ = (γ1, . . . , γs) satisfying the following conditions:

� Each γi is a word of the form γi = 0u1v for some integers u, v ≥ 0 with 1 ≤ u+ v ≤ k.

� The total number of 1’s in all of γ1, . . . , γs is at most k.

� The sum of the lengths of γi for all i ∈ [s] is equal to b.

Let E(b, k) be the set of (b, k)-embeddings.

Let (α, β, f) ∈ J (b, k, 1), where α = (α1, . . . , αr) and β = (β1, . . . , βs). Let γ = (γ1, . . . , γs) be the (b, k)-
embedding defined by

γj =

{
1βj if j is not in the image of f,

0αi1βj−αi if j = f(i).
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This can also be understood using the visualization of the card (α, β, f) as follows. For each vertex βj , if it is
connected to vertex αi for some i ∈ [r], then γj = 0αi1βj−αi and otherwise γj = 1βj . The 0’s encode the balls
passing over the ground vertex, whereas the 1’s encode the balls that were thrown up from this vertex.

Example 3.2. If (α, β, f) is the card in Example 2.3, then γ = (0000, 00, 000). If (α, β, f) is the card in
Example 2.4, then γ = (011, 1, 00, 001, 11). See Figure 3.

4

2

3

4

2

3

0000

00

000

6

1

2

2

3

1

2

3

2

011

1

00

001

11

Figure 3: The left diagram shows the card in Example 2.3 and its corresponding embedding (0000, 00, 000).
The right diagram shows the card in Example 2.4 and its corresponding embedding (011, 1, 00, 001, 11).

It is easy to see that the map (α, β, f) 7→ γ is a bijection from J (b, k, 1) to E(b, k). Therefore, we can identify
a card with b balls and capacity k with a (b, k)-embedding.

Now we are ready to find an expression for the generating function in (5). For a formal power series F (z)
in z, the notation [zk]F (z) denotes the coefficient of zk in F (z).

Proposition 3.3. For a positive integer k, we have

∑
b≥0

J(b, k, 1)xb = [zk]

(
1

1− z
· 1

1−
∑k

i=1 x
i
∑i

j=0 z
j

)
.

Proof. Since J(0, k, 1) = 1 and J(b, k, 1) = |J (b, k, 1)| = |E(b, k)| for b ≥ 1, we can instead consider the (b, k)-
embeddings for all b ≥ 1. Recall that if γ = (γ1, . . . , γs) is a (b, k)-embedding, then γi = 0ui1vi for some integers
ui, vi ≥ 0 with 1 ≤ ui + vi ≤ k such that 0 ≤ v1 + · · ·+ vs ≤ k and u1 + · · ·+ us + v1 + · · ·+ vs = b.

Let W be the set of words 0u1v such that u, v ≥ 0 and 1 ≤ u + v ≤ k. For a word w = 0u1v ∈ W , let
ℓ(w) = u+ v and ℓ1(w) = v. By definition, we have

∑
w∈W

xℓ(w)zℓ1(w) =

k∑
i=1

xi
i∑

j=0

zj .

Thus we obtain

1

1−
∑k

i=1 x
i
∑i

j=0 z
j
= 1 +

∑
t≥1

∑
(w1,...,wt)∈W t

xℓ(w1)+···+ℓ(wt)zℓ1(w1)+···+ℓ1(wt). (6)

On the other hand, for b ≥ 1, E(b, k) is the set of γ = (γ1, . . . , γt) ∈ W t, t ≥ 1, such that ℓ(γ1)+· · ·+ℓ(γt) = b
and 0 ≤ ℓ1(γ1) + · · ·+ ℓ1(γt) ≤ k. Thus∑

b≥0

J(b, k, 1)xb = 1 +
∑
b≥1

|E(b, k)|xb

= 1 +
∑
t≥1

∑
(w1,...,wt)∈W t

0≤ℓ1(γ1)+···+ℓ1(γt)≤k

xℓ(w1)+···+ℓ(wt)

=

k∑
p=0

[zp]

1 +
∑
t≥1

∑
(w1,...,wt)∈W t

xℓ(w1)+···+ℓ(wt)zℓ1(w1)+···+ℓ1(wt)

 .

By equation (6), this expression is equal to

k∑
p=0

[zp]

(
1

1−
∑k

i=1 x
i
∑i

j=0 z
j

)
= [zk]

(
1

1− z
· 1

1−
∑k

i=1 x
i
∑i

j=0 z
j

)
, (7)

as desired.
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Remark 3.4. Proposition 3.3 can be used to prove equation (2), which is equivalent to the result of Butler et
al. [5, Theorem 4]. To see this, note that, by equation (7), Proposition 3.3 can be rewritten as

∑
b≥0

J(b, k, 1)xb =

k∑
p=0

[zp]

(
1

1−
∑k

i=1 x
i
∑i

j=0 z
j

)
.

Taking the limit as k tends to infinity, we have

∑
b≥0

J(b,∞, 1)xb =

∞∑
p=0

[zp]

(
1

1−
∑∞

i=1 x
i
∑i

j=0 z
j

)
.

Adding the coefficient of zp for all nonnegative p is equivalent to substituting z = 1. Hence we obtain∑
b≥0

J(b,∞, 1)xb =
1

1−
∑∞

i=1 x
i(i+ 1)

=
1

1− d
dx

(
1

1−x − 1− x
) =

1− 2x+ x2

1− 4x+ 2x2
.

The sequence {J(b,∞, 1)}b≥0 is A003480 in the On-Line Encyclopedia of Integer Sequences (OEIS) [14]:

1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, . . . .

Now we give another expression for the generating function in (5). For a composition α ∈ Comp(n), we
define ℓ2(α) to be the number of parts of α at least 2.

Theorem 3.5. For a positive integer k, we have∑
b≥0

J(b, k, 1)xb =
∑

α∈Comp(k)

(−1)ℓ2(α)xk−ℓ(α)

(1− x− · · · − xk)1+ℓ(α)
.

Proof. We will modify the right-hand side of Proposition 3.3. We have

1

1− z
· 1

1−
∑k

i=1 x
i
∑i

j=0 z
j
=

1

1− z −
∑k

i=1 x
i
∑i

j=0 z
j +

∑k
i=1 x

i
∑i

j=0 z
j+1

=
1

1− z +
∑k

i=1 x
i(zi+1 − 1)

=
1

1−
∑k

i=1 x
i − z

(
1−

∑k
i=1 x

izi
)

=
1

1−
∑k

i=1 x
i
· 1

1− z
(
1−

∑k
i=1 x

izi
)(

1−
∑k

i=1 x
i
)−1

=
∑
r≥0

zr
(
1−

∑k
i=1 x

izi
)r

(
1−

∑k
i=1 x

i
)1+r .

Therefore by Proposition 3.3, we obtain

∑
b≥0

J(b, k, 1)xb = [zk]

∑
r≥0

(z − xz2 − · · · − xkzk+1)r

(1− x− · · · − xk)1+r

 . (8)

Observe that

(z − xz2 − · · · − xkzk+1)r =
∑

α1,...,αr∈[k+1]

zα1+···+αr (−1)ℓ2(α1,...,αr)xα1+···+αr−r.

Hence, we can rewrite (8) to obtain the result of the theorem.

For small values of k, one can easily find explicit formulas for the generating function in (5) using Theorem 3.5
as follows.

Example 3.6. If k = 1 then Comp(k) = {(1)}. Thus we have∑
b≥0

J(b, 1, 1)xb =
1

(1− x)2
.
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Example 3.7. If k = 2 then Comp(k) = {(2), (1, 1)}. Thus we have

∑
b≥0

J(b, 2, 1)xb =
−x

(1− x− x2)2
+

1

(1− x− x2)3
=

1− x+ x2 + x3

(1− x− x2)3
.

This proves the identity (3) conjectured by Butler et al. [5, Conjecture 13]. The sequence {J(b, 2, 1)}b≥0 is
A370304 in OEIS [14]:

1, 2, 7, 17, 41, 91, 195, 403, 812, 1601, 3102, 5922, 11165, 20824, 38477, . . . .

Example 3.8. If k = 3 then Comp(k) = {(3), (2, 1), (1, 2), (1, 1, 1)}. Thus we have

∑
b≥0

J(b, 3, 1)xb =
−x2

(1− x− x2 − x3)2
+

−2x

(1− x− x2 − x3)3
+

1

(1− x− x2 − x3)4

=
1− 2x+ x2 + 4x3 + 3x4 − 3x6 − 2x7 − x8

(1− x− x2 − x3)4
.

The sequence {J(b, 3, 1)}b≥0 is A370306 in OEIS [14]:

1, 2, 7, 24, 70, 198, 532, 1370, 3418, 8296, 19677, 45770, 104687, 235972, . . . .

In fact, using Theorem 3.5, we can find an explicit formula for the generating function in (5) for a general
capacity k.

Corollary 3.9. For a positive integer k, we have

∑
b≥0

J(b, k, 1)xb =

k∑
r=1

r∑
s=0

(−1)r−s
(
r
s

)(
k−r−1
r−s−1

)
xk−r

(1− x− · · · − xk)1+r
,

where we extend the binomial coefficient by
(−1

n

)
=
(

n
−1

)
= 1 if n = −1 and

(−1
n

)
=
(

n
−1

)
= 0 otherwise.

Proof. We can rewrite Theorem 3.5 as

∑
b≥0

J(b, k, 1)xb =

k∑
r=1

xk−r

(1− x− · · · − xk)1+r

∑
α∈Comp(k,r)

(−1)ℓ2(α). (9)

It is easy to see that the number of α ∈ Comp(k, r) with exactly s parts equal to 1 is
(
r
s

)(
k−r−1
r−s−1

)
. Hence,

∑
α∈Comp(k,r)

(−1)ℓ2(α) =

r∑
s=0

(−1)r−s

(
r

s

)(
k − r − 1

r − s− 1

)
. (10)

By combining equations (9) and (10) we obtain the desired formula.

Remark 3.10. Note that the right-hand side of (10), say

C(k, r) =

r∑
s=0

(−1)r−s

(
r

s

)(
k − r − 1

r − s− 1

)

can be defined for any nonnegative integers k and r. Since
(−n

k

)
= (−1)k

(
n+k−1

k

)
, we have, for k < r,

C(k, r) = −
r∑

s=0

(
r

s

)(
2r − k − s− 1

r − s− 1

)
= −

r∑
s=1

(
r

s

)(
r − k − 1

s− 1

)
.

This shows that, for 1 ≤ k < r, we have C(k, r) = −A(r, r − k + 1), where A(n, k) is the sequence A050143 in
OEIS [14]. We note that the sequence A(n, k) has an interpretation using certain lattice paths; see [14].
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4. Juggling card sequences with fixed capacity

In this section, we find an expression for the generating function for J(b, k, ℓ) with fixed capacity k and length ℓ.
To this end we introduce (b, k, ℓ)-embeddings, which generalize the notion of (b, k)-embeddings of cards to ℓ-
card sequences. In order to analyze (b, k, ℓ)-embeddings, we then introduce an operator which generalizes the
q-derivative operator.

Observe that the (b, k)-embedding of a card keeps track of when balls are thrown. In what follows, we extend
this notion to ℓ-card sequences.

Let (C1, . . . , Cℓ) ∈ J(b, k, ℓ). For i = 0, 1, . . . , ℓ, we will define a sequence α(i) of words of the form
0c11c1 · · · ici as follows.

� First, we define α(0) = (0a1 , . . . , 0as), where (a1, . . . , as) is the departure composition of C1.

� For i ∈ [ℓ], suppose (β1, . . . , βt) is the (b, k)-embedding of Ci. Then each βj is a word of the form 0u1v.

Case 1 There are no 1’s in β1, . . . , βt. In this case, we define α(i) = α(i−1).

Case 2 There is at least one 1 in β1, . . . , βt. Then, first, we replace each 1 by i in β1, . . . , βt. Let
βd1

, . . . , βdm
be the words among β1, . . . , βt containing at least one 0, where d1 < · · · < dm. Then

α(i−1) must have m + 1 words. Let α(i−1) = (α
(i−1)
1 , . . . , α

(i−1)
m+1 ). For each j ∈ [m], we replace the

subword of βdj
consisting of zeros by α

(i−1)
j+1 .

Example 4.1. Let (C1, . . . , C4) be the 4-card sequence in Figure 2. Then we have α(0) = (0000, 00, 000),
α(1) = (0011, 000, 11), α(2) = (22, 000, 112, 2), α(3) = (22, 000, 112, 2), and α(4) = (0004, 112, 2, 4). See Figure 4.

Note that a 0 in α(i) means that the associated ball came from the original set of balls whereas a j in α(i)

means that the associated ball was thrown up by card Cj .

4

2

3

4

3

2

0000

00

000

0011

000

11

4

3

2

2

3

3

1

22

000

112

2

2

3

3

1

2

3

3

1

22

000

112

2

2

3

3

1

4

3

1

1

0004

112

2

4

Figure 4: A 4-card sequence (C1, C2, C3, C4) with the data (α(0), α(1), α(2), α(3), α(4)) of when balls are thrown.
Here α(i−1) and α(i) are shown on the left and on the right, respectively, of each card Ci.

The ℓ-card sequence (C1, . . . , Cℓ) can be recovered from (α(0), . . . , α(ℓ)) because the (b, k)-embedding of Ci

is obtained from α(i) by replacing every integer less than i by 0 and every i by 1. Moreover, α(i−1) is also
determined by α(i) and the history of the balls thrown at beat i. More precisely, let δi be the first word in
α(i−1) if there is at least one i in α(i), and let δi = ∅ otherwise. Then α(i−1) is determined by α(i) and δi as
follows. If δi = ∅, then α(i−1) = α(i). Otherwise, α(i−1) is obtained from α(i) by deleting all i’s, discarding all
empty words if there are any, and adding δi at the beginning.

Applying this process iteratively, the whole sequence (α(0), . . . , α(ℓ)) is determined by the pair (γ, δ), where
γ = α(ℓ) and δ = (δ1, . . . , δℓ). Observe that the length of the word δi is equal to the total number of i’s in α(i),
which is also equal to the total number of i’s in δi+1, . . . , δℓ, and α(ℓ).

Example 4.2. The 4-card sequence in Figure 4 corresponds to the pair (γ, δ), where γ = (0004, 112, 2, 4), and
δ = (0000, 0011, ∅, 22).

The above observations imply that the ℓ-card sequence (C1, . . . , Cℓ) can be identified with the pair (γ, δ).
This leads us to the following definition.

Definition 4.3. A (b, k, ℓ)-embedding is a pair (γ, δ) of two sequences γ = (γ1, . . . , γr) and δ = (δ1, . . . , δℓ)
satisfying the following conditions:

� Each γi is a word of the form 0c01c1 · · · ℓcℓ for some integers c0, c1, . . . , cℓ ≥ 0 with 1 ≤ c0+c1+ · · ·+cℓ ≤ k.

� The sum of the lengths of γi for all i ∈ [r] is equal to b.

� Each δi is a (possibly empty) word of the form 0d01d1 · · · (i− 1)di−1 for some integers d0, d1, . . . , di−1 ≥ 0
such that 0 ≤ d0 + d1 + · · · + di−1 ≤ k and d0 + d1 + · · · + di−1 is equal to the total number of i’s in
γ1, . . . , γr and δi+1, δi+2, . . . , δℓ.

ECA 6:2 (2026) Article #S2R12 7



Yumin Cho, Jaehyun Kim, Jang Soo Kim, and Nakyung Lee

Let E(b, k, ℓ) be the set of (b, k, ℓ)-embeddings.

By the observations above, the map (C1, . . . , Cℓ) 7→ (γ, δ) is a bijection from J (b, k, ℓ) to E(b, k, ℓ). In order
to enumerate E(b, k, ℓ) we need some definitions.

For a nonnegative integer n, the complete homogeneous symmetric function hn(x1, . . . , xm) is defined by

hn(x1, . . . , xm) =
∑

i1+···+im=n

xi1
1 · · ·xim

m ,

where the sum is over all m-tuples (i1, . . . , im) of nonnegative integers summing to n. Note that we have
h0(x1, . . . , xm) = 1.

Definition 4.4. For indeterminates z1, . . . , zk, we denote by Dz1,...,zk the linear operator on the space of formal
power series in zk defined by

Dz1,...,zkz
n
k = hn(1, z1, . . . , zk−1)z

n
k .

Note that this can be seen as a generalization of the q-derivative operator ( d
dz )q, which is the linear operator

on the space of formal power series in z defined by(
d

dz

)
q

zn = (1 + q + · · ·+ qn−1)zn−1.

Hence Dq,z is equal to the operator ( d
dz )qz, which multiplies z and then takes the q-derivative.

Now we are ready to find an expression for the generating function for J(b, k, ℓ) when k and ℓ are fixed.

Theorem 4.5. For fixed positive integers k and ℓ, we have∑
b≥0

J(b, k, ℓ)xb = [zk1 · · · zkℓ ]
(

1

1− z1
· · · 1

1− zℓ
Dz1,z2Dz1,z2,z3 · · ·Dz1,...,zℓ

1

2− hk(1, x, xz1, . . . , xzℓ)

)
.

Proof. We proceed similarly as in the proof of Proposition 3.3. LetW be the set of words of the form 0c01c1 · · · ℓcℓ
for some integers c0, c1, . . . , cℓ ≥ 0 with 1 ≤ c0 + c1 + · · ·+ cℓ ≤ k. For a word w = 0c01c1 · · · ℓcℓ ∈ W , we define
len(w) = c0 + · · ·+ cℓ and

wt(w) = zc11 · · · zcℓℓ .

Then we have ∑
w∈W

xlen(w) wt(w) =
∑

1≤c0+···+cℓ≤k

xc0+···+cℓzc11 · · · zcℓℓ = hk(1, x, xz1, . . . , xzℓ)− 1.

Therefore we obtain

A :=
1

2− hk(1, x, xz1, . . . , xzℓ)
= 1 +

∑
r≥1

∑
(w1,...,wr)∈W r

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr). (11)

First, we consider how the operator Dz1,...,zℓ acts on a monomial in the right-hand side of (11). For
(w1, . . . , wr) ∈ W r, we have

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) = xbzn1
1 · · · znℓ

ℓ

for some integers b ≥ 1 and n1, . . . , nℓ ≥ 0. Then

Dz1,...,zℓx
bzn1

1 · · · znℓ

ℓ = xbzn1
1 · · · znℓ

ℓ hnℓ
(1, z1, . . . , zℓ−1)

= xbzn1
1 · · · znℓ

ℓ

∑
c0+···+cℓ−1=nℓ

zc11 · · · zcℓ−1

ℓ−1 .

This implies that

Dz1,...,zℓA = 1 +
∑

(w1,...,wr,uℓ)∈Xℓ

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) wt(uℓ), (12)

where Xℓ is the set of tuples (w1, . . . , wr, uℓ) such that wi ∈ W for i ∈ [r] and uℓ is a word of the form
0c0 · · · (ℓ − 1)cℓ−1 for some nonnegative integers c0, . . . , cℓ−1 with the condition that c0 + · · · + cℓ−1 is equal to
the total number of ℓ’s in w1, . . . , wr.
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Next, we consider how the operator Dz1,...,zℓ−1
acts on a monomial in the right-hand side of (12). For

(w1, . . . , wr, uℓ) ∈ Xℓ, we have

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) wt(uℓ) = xbzn1
1 · · · znℓ

ℓ

for some integers b ≥ 1 and n1, . . . , nℓ ≥ 0. Then we have

Dz1,...,zℓ−1
xbzn1

1 · · · znℓ

ℓ = xbzn1
1 · · · znℓ

ℓ hnℓ−1
(1, z1, . . . , zℓ−2)

= xbzn1
1 · · · znℓ

ℓ

∑
c0+···+cℓ−2=nℓ−1

zc11 · · · zcℓ−1

ℓ−1 .

This implies that

Dz1,...,zℓ−1
Dz1,...,zℓA = 1 +

∑
(w1,...,wr,uℓ,uℓ−1)∈Xℓ−1

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) wt(uℓ) wt(uℓ−1),

where Xℓ−1 is the set of tuples (w1, . . . , wr, uℓ, uℓ−1) such that (w1, . . . , wr, uℓ) ∈ Xℓ and uℓ−1 is a word of the
form 0c0 · · · (ℓ− 2)cℓ−2 for some nonnegative integers c0, . . . , cℓ−2 with the condition that c0+ · · ·+ cℓ−2 is equal
to the total number of (ℓ− 1)’s in w1, . . . , wr, uℓ.

Applying the above argument iteratively, we obtain that

Dz1,z2 · · ·Dz1,...,zℓA = 1 +
∑

(w1,...,wr,uℓ,...,u1)∈X1

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) wt(uℓ) · · ·wt(u1), (13)

where X1 is the set of tuples (w1, . . . , wr, uℓ, . . . , u1) such that for each i ∈ [r], wi ∈ W and for each j ∈ [ℓ],
uj is a word of the form 0c0 · · · (j − 1)cj−1 for some nonnegative integers c0, . . . , cj−1 with the condition that
c0 + · · ·+ cj−1 is equal to the total number of j’s in w1, . . . , wr, uℓ, . . . , uj+1. By equation (13), we have

[zk1 · · · zkℓ ]
(

1

1− z1
· · · 1

1− zℓ
Dz1,z2Dz1,z2,z3 · · ·Dz1,...,zℓA

)
= 1 +

∑
b≥1

|Yb|xb,

where Yb is the set of tuples (w1, . . . , wr, uℓ, . . . , u1) ∈ X1 such that

xlen(w1)+···+len(wr) wt(w1) · · ·wt(wr) wt(uℓ) · · ·wt(u1) = xbzn1
1 · · · znℓ

ℓ

for some integers 0 ≤ n1, . . . , nℓ ≤ k.
It is immediate from the definitions of Yb and E(b, k, ℓ) that the map

(w1, . . . , wr, uℓ, . . . , u1) 7→ (γ, δ),

where γ = (w1, . . . , wr) and δ = (u1, . . . , uℓ), is a bijection from Yb to E(b, k, ℓ). Therefore we conclude

1 +
∑
b≥1

|Yb|xb = 1 +
∑
b≥1

|E(b, k, ℓ)|xb =
∑
b≥0

J(b, k, ℓ)xb,

which completes the proof.

5. Rationality of the generating function

In this section, as a consequence of Theorem 4.5, we show that the generating function for J(b, k, ℓ) with fixed
k and ℓ is a rational function. This is equivalent to the statement that the sequence {J(b, k, ℓ)}b≥0 satisfies a
linear recurrence relation; see [17, Theorem 4.1.1].

We first review some basic properties of derivatives and q-derivatives and extend these properties to the
operator Dz1,...,zm . By the quotient rule in calculus, one can easily deduce that the derivative of a rational
function is also a rational function. For the q-derivative, it is well known [13, Equation (11.4.1)] that(

d

dx

)
q

f(x) =
f(x)− f(qx)

x− qx
.

This implies that the q-derivative of a rational function is also a rational function. Note that since

Dz1,z2z
n
2 = (1 + z1 + · · ·+ zn1 )z

n
2 =

(1− zn+1
1 )zn2

1− z1
,
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we have

Dz1,z2f(z2) =
f(z2)− z1f(z1z2)

1− z1
. (14)

Hence, if f(z2) is a rational function in z2, then so is Dz1,z2f(z2).
Our strategy is to show that the operator Dz1,...,zm , for any m ≥ 2, also preserves the rationality of a formal

power series. To do this, we need the following two lemmas.

Lemma 5.1. For integers n ≥ 0 and m ≥ 2, we have

hn(1, z1, . . . , zm) =
zm−1hn(1, z1, . . . , zm−1)− zmhn(1, z1, . . . , zm−2, zm)

zm−1 − zm
.

Proof. Let R[z1, . . . , zk] denote the space of polynomials in the variables z1, . . . , zk. Consider the linear operator
∆ : R[x] −→ R[x, y] defined by

∆(p(x)) =
x · p(x)− y · p(y)

x− y
.

Note that ∆ (xn) =
∑

i+j=n x
iyj . Hence, by letting x = zm−1 and y = zm and applying this operator to

h (z1, . . . , zm−1), we obtain the desired identity.

Lemma 5.2. For an integer m ≥ 2, we have

Dz1,...,zm+1 =
zm−1Dz1,...,zm−1,zm+1

− zmDz1,...,zm−2,zm,zm+1

zm−1 − zm
.

Proof. Both sides are linear operators in the space of formal power series in zm+1. Therefore, it suffices to show
that they act on znm+1 in the same way, that is,

Dz1,...,zm+1
znm+1 =

zm−1Dz1,...,zm−1,zm+1 − zmDz1,...,zm−2,zm,zm+1

zm−1 − zm
znm+1.

But this is equivalent to

hn(1, z1, . . . , zm)znm+1 =
zm−1hn(1, z1, . . . , zm−1)− zmhn(1, z1, . . . , zm−2, zm)

zm−1 − zm
znm+1,

which follows from Lemma 5.1.

Now we are ready to show that the operator Dz1,...,zm preserves the rationality of a formal power series.

Proposition 5.3. Suppose that ℓ and m are integers with 2 ≤ m ≤ ℓ and let z1, . . . , zℓ be indetermi-
nates. If f(z1, . . . , zℓ) is a formal power series in z1, . . . , zℓ that is a rational function in z1, . . . , zℓ, then
Dz1,...,zmf(z1, . . . , zℓ) is a rational function in z1, . . . , zℓ.

Proof. If m = 2, the statement follows from (14). Suppose that the statement holds for m ≥ 2. Then by
Lemma 5.2 the case of m+ 1 also holds. The proof then follows by induction.

Finally, we can prove the rationality of the generating function studied in the previous section.

Corollary 5.4. For fixed positive integers k and ℓ, the generating function∑
b≥0

J(b, k, ℓ)xb

is a rational function in the variable x.

Proof. By Theorem 4.5 and Proposition 5.3, we have∑
b≥0

J(b, k, ℓ)xb = [zk1 · · · zkℓ ]f(z1, . . . , zℓ, x) (15)

for a formal power series f(z1, . . . , zℓ, x) in z1, . . . , zℓ, x that is a rational function in these indeterminates. If
g(z) is a formal power series in z that is a rational function in z and some other indeterminates, say u1, . . . , ur,
then by the quotient rule, [zk]g(z) = k!g(k)(0) is a rational function in u1, . . . , ur. Therefore the right-hand side
of (15) is a rational function in x as desired.

By Corollary 5.4, for fixed positive integers k and ℓ, the sequence {J(b, k, ℓ)}b≥0 satisfies a linear recurrence
relation. However, due to the complexity of its generating function formula in Theorem 4.5, finding an explicit
recurrence relation appears to be challenging. In [11], the authors used holonomic methods to find recurrence
relations for the number of multiset derangements. It would be interesting to see if their method can be applied
to the above sequence.
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6. Conclusion

In this paper, we found an expression for the generating function∑
b≥0

J(b, k, ℓ)xb (16)

for the number of multiplex juggling card sequences when the capacity k and the length ℓ are fixed. As a
consequence, we showed that this generating function is a rational function in x. Equivalently, the sequence
{J(b, k, ℓ)}b≥0 satisfies a linear recurrence relation.

Note that there are three parameters in the number J(b, k, ℓ) and the generating function in (16) keeps track
of b. Therefore, it is natural to consider the following two generating functions:∑

k≥0

J(b, k, ℓ)yk, (17)

∑
ℓ≥0

J(b, k, ℓ)zℓ. (18)

Since J(b, k, ℓ) = J(b,∞, ℓ) for k ≥ b, it is immediate that the generating function (17) is a rational function
in y. Using the transfer matrix method [17, Section 4.7], one can show that the generating function in (18)
is also a rational function in z. It would be very interesting to see if this rationality continues to hold for the
multivariate generating function, keeping track of all three parameters b, k, and ℓ.

Problem 6.1. Determine whether the following is a rational function in the three variables x, y, z:∑
b≥0

∑
k≥0

∑
ℓ≥0

J(b, k, ℓ)xbykzℓ.

Note that J(b, k, ℓ) can be used to compute the number of ways to juggle b balls with capacity k for beats
1, . . . , ℓ without any restrictions on the initial and final states of the balls. In order to enumerate periodic
multiplex juggling patterns, we need to consider the number J0(b, k, ℓ) of ℓ-card sequences (C1, . . . , Cℓ) ∈
J (b, k, ℓ) such that the departure composition of C1 is equal to the arrival composition of Cℓ. It would be
interesting to extend our results to J0(b, k, ℓ). We end this paper with the following problems.

Problem 6.2. For fixed k and ℓ, find a formula for the generating function∑
b≥0

J0(b, k, ℓ)x
b.

Problem 6.3. Determine whether the following is a rational function in the three variables x, y, z:∑
b≥0

∑
k≥0

∑
ℓ≥0

J0(b, k, ℓ)x
bykzℓ.
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