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ABSTRACT: In 2019, Butler, Choi, Kim, and Seo introduced a new type of juggling card that represents multiplex
juggling patterns in a natural bijective way. They conjectured a formula for the generating function for the
number of multiplex juggling cards with capacity 2. In this paper, we prove their conjecture. More generally,
we find an explicit formula for the generating function with any capacity. We also find an expression for the
generating function for multiplex juggling card sequences by introducing a generalization of the g-derivative
operator. As a consequence, we show that this generating function is a rational function.
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1. Introduction

Juggling is an act of throwing and catching balls. Since the 1980s, juggling has been studied mathematically
by many researchers; for example, see [1-4,6-10,12,16, 18] and references therein. We refer the reader to [4,15]
for the history of mathematics of juggling.

Juggling can be divided into two categories: simple juggling and multiplex juggling. In simple juggling, at
most one ball is caught and thrown at every beat. Multiplex juggling is a generalization of simple juggling,
where at most k balls are caught and thrown at every beat. The number k is called the (hand) capacity.

A simple juggling pattern is a bijection f : Z — 7Z such that f(i) > i for all i € Z. This can be understood
as the situation that a juggler catches a ball at beat ¢ and throws it immediately so that it lands at beat f(4).
(If f(i) = i, then the juggler does not catch or throw any ball at beat i.) A simple juggling pattern is periodic
if the function h : Z — Z defined by h(i) = f(i) — i is periodic.

Buhler, Eisenbud, Graham, and Wright [4] showed that the number of simple juggling patterns with b balls
and period p is equal to (b + 1)? — bP. Ehrenborg and Readdy [10] found a simple proof of this result by
introducing juggling cards.

There are some models of multiplex juggling cards introduced by Ehrenborg—Readdy [10] and Butler—Chung—
Cummings—Graham [6]. However, they do not represent multiplex juggling patterns in a bijective way. In 2019,
Butler, Choi, Kim, and Seo [5] introduced a new type of card that represents multiplex juggling patterns in a
natural bijective way. We refer the reader to [5] for more details.

In this paper, we study enumerative properties of the number of multiplex juggling card sequences. We
consider three natural parameters of multiplex juggling card sequences: the number b of balls, the capacity k,
and the length £ of a sequence of cards. Let J(b,k, ) denote the number of multiplex juggling card sequences
with given parameters k, b, and ¢. See Section 2 for the precise definition.

*The authors are listed in alphabetical order, as is customary in mathematics, and contributed equally to this work.
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Now we review some known results on the number J(b, k, 1) of multiplex juggling cards with b balls and
capacity k. If £ = 1, it is immediate from the definition that

SO J0,1, 1) = b+ 1)at = ﬁ

b>0 b>0

For the other extreme case k = oo, Butler et al. [5, Theorem 4] showed that the sequence {J(b,00,1)}p>0
satisfies the following simple linear recurrence: J(0,00,1) =1, J(1,00,1) =2, J(2,00,1) = 7, and for b > 3,

J(b,00,1) = 4J(b—1,00,1) — 2J (b — 2,00, 1). (1)

By the standard method for linear recurrences, see [17, Theorem 4.1.1], one can easily check that the recursion (1)
is equivalent to
1— 2z + 22

J(b. oo, gl = —— XL
>_J(b,o0 e 1— 4z + 222

b>0

(2)
For the case k = 2, Butler et al. [5, Conjecture 13] conjectured the following generating function formula:

1—z+a?+2°
2: b _
b>0

In this paper, we prove this conjecture; see Example 3.7. More generally, we find an explicit formula for the
generating function szo J(b, k, 1)z’ for any capacity k; see Corollary 3.9. We also find an expression for

> Ik, 020 (4)

b>0

for any capacity k and length ¢ by introducing a generalization of the g-derivative operator; see Theorem 4.5.
As a consequence, we show that the generating function (4) is a rational function in z.

The rest of this paper is organized as follows. In Section 2 we provide necessary definitions. In Section 3
we study the generating function (4) for the case £ = 1. In Section 4 we study the generating function (4) for a
general £. In Section 5 we show that (4) is a rational function in z. In Section 6 we summarize our results and
propose some open problems.

2. Preliminaries

In this section, we give the necessary definitions. Throughout this paper we will use the notation [n] = {1,...,n}
for a positive integer n.

Definition 2.1. A composition is a sequence a = (ay,...,a,) of positive integers. Each «; is called a part
of a. The size |af of « is defined by |a] = a1 + -+ + a,. If |a] = n, we say that « is a composition of n. The
length £(c) of v is defined to be the number of parts in «. We denote by Comp(n) the set of compositions of n.
We also denote by Comp(n, k) the set of compositions of n with k parts.

Definition 2.2. A (multiplex juggling) card is a triple («, 8, f) such that o = (a1, ..., ;) and 8 = (B1,...,8s)
are compositions with |a| = |3, and f : [r] — {0} U [s] is a strictly increasing function satisfying o; < By(;) for
all i € [r] with f(i) # 0. We call @ and 3 the arrival composition and the departure composition of the card,
respectively. If every part of a and § is at most k, then we say that the card has capacity k. We also say that
the card has || balls.

We can visualize a card (o, 8, f) as follows. Suppose a = (@1,...,a,) and 8 = (B1,...,0s). Consider a
rectangle with r vertices on the left side labeled «aq,...,a, from bottom to top, s vertices on the right side
labeled B, ..., Bs from bottom to top, and a vertex on the bottom side called the ground vertex. If f(1) # 0,
then it follows from Definition 2.2 that we must have r = s and f(i) = i for all ¢ € [r]. In this case, draw a
curve from vertex a; to vertex f; for all ¢ € [r]. If f(1) = 0, then draw a curve from vertex a;y to the ground
vertex, a curve from vertex a; to vertex (¢ for each i € {2,3,...,7}, and a curve from the ground vertex to
each vertex 8 such that either j = f(¢) for some i € [r] with o; < §; or j is not in the image of f.

Such a visualization can be understood as «; balls entering the card on level ¢ and 8; balls leaving the card
on level j. Note that if f(1) # 0 then all balls stay in the air, and if f(1) = 0 then «; balls are caught and
thrown again, so that these balls are redistributed.

Example 2.3. Let (o, 8, f) be the card such that « = (4,2,3), 8 = (4,2,3), and f : {1,2,3} — {0,1,2,3} is
the function given by f(1) =1, f(2) =2, and f(3) = 3. Then the card can be visualized as the left diagram in
Figure 1.
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Example 2.4. Let (o, 3, f) be the triple such that o« = (6,1, ,
{0,1,2,3,4,5} is the function given by f(1) =0, f(2) =1, f(3) = 3, and f
visualized as the right diagram in Figure 1.

2), and f : {1,2,3,4} —
4. Then the card can be

@l

©,

®'®'
&

Figure 1: The left diagram is a visualization of the card in Example 2.3. The right diagram is a visualization
of the card in Example 2.4.

One multiplex juggling card represents a situation of multiplex juggling at a given moment, say at beat 1.
We say that two juggling cards (o, 8, f) and (o, 5/, f') are compatible if 8 = o'. By listing £ compatible cards,
we can represent a situation of multiplex juggling from beats 1 to ¢. To be more precise, we introduce the
following definition.

Definition 2.5. An ¢-card sequence with b balls and capacity k is a sequence (C1, ..., Cy) of £ cards with b balls
and capacity k such that the departure composition of C; is equal to the arrival composition of C;4; for all
i € [¢ —1]. We denote by J(b,k, ) the set of ¢-card sequences with b balls and capacity k. We also define
J(b,k, ) =|T(b,k,0)|.

For example, see Figure 2.

Figure 2: An example of a 4-card sequence.

3. Juggling cards with fixed capacity
In this section, we provide three expressions for the generating function

> b,k 1)a? (5)

b>0

with fixed capacity k. To this end, we give another description of a card using embeddings introduced in [5].
Recall that J(b,k, 1) is the set of all cards with b balls and capacity k. We use the notation r* to denote
the word consisting of s r’s.

Definition 3.1. A (b, k)-embedding is a sequence v = (71, ...,7s) satisfying the following conditions:
e Each ~; is a word of the form ; = 0“1” for some integers u,v > 0 with 1 <wu +v < k.
e The total number of 1’s in all of 71,...,7s is at most k.
e The sum of the lengths of ; for all ¢ € [s] is equal to b.

Let £(b, k) be the set of (b, k)-embeddings.

Let (o, 8, f) € J(b,k,1), where a = (a1,...,,.) and 8 = (f1,...,8s). Let v = (y11,...,7s) be the (b, k)-
embedding defined by
B 15 if j is not in the image of f,
BT omas e i = f(0).
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This can also be understood using the visualization of the card (e, 3, f) as follows. For each vertex ;, if it is
connected to vertex a; for some i € [r], then v; = 0419 =% and otherwise «; = 1%. The 0’s encode the balls
passing over the ground vertex, whereas the 1’s encode the balls that were thrown up from this vertex.

Example 3.2. If (a, (8, f) is the card in Example 2.3, then v = (0000, 00,000). If (a, S, f) is the card in
Example 2.4, then v = (011, 1,00,001, 11). See Figure 3.

]
3) (3) 000
N o4
[ o

Figure 3: The left diagram shows the card in Example 2.3 and its corresponding embedding (0000, 00, 000).
The right diagram shows the card in Example 2.4 and its corresponding embedding (011, 1,00,001,11).

It is easy to see that the map («, 8, f) — - is a bijection from J (b, k, 1) to £(b, k). Therefore, we can identify
a card with b balls and capacity k with a (b, k)-embedding.

Now we are ready to find an expression for the generating function in (5). For a formal power series F'(z)
in z, the notation [2¥]F(2) denotes the coefficient of 2* in F(z).

Proposition 3.3. For a positive integer k, we have

b Zk 1 . !
DTk e’ = ]<1—z 1-yh ”Zé_ozj).

b>0 i=1T

Proof. Since J(0,k,1) =1 and J(b,k,1) = |T(b,k,1)| = |E(b, k)| for b > 1, we can instead consider the (b, k)-
embeddings for all b > 1. Recall that if v = (y1,...,7s) is a (b, k)-embedding, then ~; = 0%i1%¢ for some integers
u;,v; > 0with 1 <wu; +v; <ksuchthat 0 <wv;+---+ovs<kandu + - -4+us+vy+---+vs =0

Let W be the set of words 0“1Y such that u,v > 0and 1 < u+v < k. For a word w = 01" € W, let
l(w) =u+v and ¢;(w) = v. By definition, we have

Z gt aw) — iwi i 27,

weW i=1  j=0

Thus we obtain

1
i =14 xl(w1)+-~+l(wt)zél(w1)+---+€1(wt). (6)
1= E;‘:O 2 t>1 (w1,...,w,)EW*

On the other hand, for b > 1, £(b, k) is the set of v = (y1,...,7) € W', ¢ > 1, such that £(y1)+---+(1) = b
and 0 < ly(v1) 4+ -+ £1(y) < k. Thus

S Ik D2t =1+ [E(b, k)"

b>0 b>1

=14+ Z Z pw) 4 +L(wy)

t>1 (wl,m,wt)GW‘
0<ly (y1)+ 4L () <k

k
— Z[Z;D] 14+ Z Z xf(w1)+"'+f(wt)Zel(wl)-‘r'“-‘rfl(wt)

p=0 21 (Wi wy) EW

By equation (6), this expression is equal to

S ! — 12— ! (1)
e SIS SN S B SRR T S D S

as desired. O
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Remark 3.4. Proposition 3.3 can be used to prove equation (2), which is equivalent to the result of Butler et
al. [5, Theorem 4]. To see this, note that, by equation (7), Proposition 3.3 can be rewritten as

> I,k 1)’ zk: (1_2 1,21- )

b>0 p=0

Taking the limit as k tends to infinity, we have

Jb,oqlxbzoozp 14 . )
Z | : Z[ ]<1—Zf31x122—ozj

b>0 p=0

Adding the coefficient of zP for all nonnegative p is equivalent to substituting z = 1. Hence we obtain

1 1 1— 2z + 22
J(b,oo,l)a:b: — _ .
bzzo 1= 2 2i(i+1) 1_7(7_1 ) 1 —4x + 222

dx

l1—zx

The sequence {J(b,00,1)}p>0 is A003480 in the On-Line Encyclopedia of Integer Sequences (OEIS) [14]:
1,2,7,24,82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, . . ..

Now we give another expression for the generating function in (5). For a composition a € Comp(n), we
define ¢5(«) to be the number of parts of « at least 2.

Theorem 3.5. For a positive integer k, we have

1)2(0) h—t(a)

Z J(b,k,1)z" = Z 1 j; O

b>0 a€Comp(k)

Proof. We will modify the right-hand side of Proposition 3.3. We have

1 1 1
— PE—; . Ep—; i
1—= 1= 73027 1—z=30 23 (7 +Zz 1$Z —o T
- 1
1—z+2f_ (21 —1)
_ 1
I—Zflxl—z(l—Zflx%l)
1 1

Therefore by Proposition 3.3, we obtain

ZJ(bJﬂ,l)xb: [2¥] Z (Z(—l CEZCC::;C §1+r . (8)

b>0 r>0

Observe that

(Z _ £E2’2 L kakJrl)’l‘ — Z Zoz1+-~+ar(_1)fg(o¢1 ..... ar)l,alJr---Jrarfr.

a1,..0n€[k+1]
Hence, we can rewrite (8) to obtain the result of the theorem. O

For small values of k, one can easily find explicit formulas for the generating function in (5) using Theorem 3.5
as follows.

Example 3.6. If £ = 1 then Comp(k) = {(1)}. Thus we have

1
Zjbll =T

b>0

ECA 6:2 (2026) Article #S2R12 5
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Example 3.7. If k = 2 then Comp(k) = {(2), (1,1)}. Thus we have

—x 1 1—z+22+23
J(,2, 1)z = .
b%% (1—x—x2) +(1—x—a:2)3 (1 -z —22)3

This proves the identity (3) conjectured by Butler et al. [5, Conjecture 13]. The sequence {J(b,2,1)}p>0 is
A370304 in OEIS [14]:

1,2,7,17,41,91, 195, 403,812, 1601, 3102, 5922, 11165, 20824, 38477, . . . .

Example 3.8. If £ = 3 then Comp(k) = {(3),(2,1),(1,2),(1,1,1)}. Thus we have

—z? —2x 1
J(b,3,1)x
g (1—x—x2—w3)2+(l—x—xz—x3)3+(1—w—x2—x3)4

_ 1—2z+ 22+ 42% + 32* — 328 — 227 — 28
o (1—x—a22—23)4 '

The sequence {J(b,3,1)}p>0 is A370306 in OEIS [14]:
1,2,7,24,70,198, 532, 1370, 3418, 8296, 19677, 45770, 104687, 235972, . . ..

In fact, using Theorem 3.5, we can find an explicit formula for the generating function in (5) for a general
capacity k.

Corollary 3.9. For a positive integer k, we have

S~ CDT QG
Zkal Z 17m7...71}€)1+7’ ’

b>0 r=1s=0

where we extend the binomial coefficient by (_nl) = (") =1ifn=-1 and (_nl) = (fl) = 0 otherwise.

Proof. We can rewrite Theorem 3.5 as

> Ik, 1)

b>0 r=1

M;r

e ..._Ikmr > (pR@. 9)

acComp(k,r)

It is easy to see that the number of o € Comp(k,r) with exactly s parts equal to 1 is (’9) (k_r_l). Hence,

r—s—1
_ fz(a): r _\r—s T k—?“—l
> e =yen()(E200)). (10)
acComp(k,r) s=0
By combining equations (9) and (10) we obtain the desired formula. O

Remark 3.10. Note that the right-hand side of (10), say

cun=Er ()i

s=0

can be defined for any nonnegative integers k and 7. Since (7) = (—1)* (”ﬂj*l), we have, for k < r,

cwen=-S ()T =S O 0Y)

This shows that, for 1 < k < r, we have C(k,r) = —A(r,r — k + 1), where A(n, k) is the sequence A050143 in
OEIS [14]. We note that the sequence A(n, k) has an interpretation using certain lattice paths; see [14].
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4. Juggling card sequences with fixed capacity

In this section, we find an expression for the generating function for J(b, k, ¢) with fixed capacity k and length ¢.
To this end we introduce (b, k, £)-embeddings, which generalize the notion of (b, k)-embeddings of cards to ¢-
card sequences. In order to analyze (b, k, {)-embeddings, we then introduce an operator which generalizes the
g-derivative operator.

Observe that the (b, k)-embedding of a card keeps track of when balls are thrown. In what follows, we extend
this notion to ¢-card sequences.

Let (C1,...,Cp) € J(bk,£). For i = 0,1,...,4, we will define a sequence a'?) of words of the form
011 . -4% as follows.

e First, we define o(®) = (0%1,...,0%), where (ay,...,a,) is the departure composition of C.

e For i € [{], suppose (B1,..., ) is the (b, k)-embedding of C;. Then each 3; is a word of the form 0*1".

Case 1 There are no 1’s in 1, ..., 8;. In this case, we define a9 = (=1,
Case 2 There is at least one 1 in fq,...,53;. Then, first, we replace each 1 by ¢ in Sy,...,5;. Let
Bdyy-- -, P4, be the words among S, ..., containing at least one 0, where dy < --- < dy;,. Then

ifl) = (agi_l), . .7a7(f;11)). For each j € [m], we replace the
subword of 34, consisting of zeros by a;:__f).

a1 must have m + 1 words. Let o

Example 4.1. Let (Cy,...,C4) be the 4-card sequence in Figure 2. Then we have o(®) = (0000, 00,000),
o = (0011,000,11), a® = (22,000, 112,2), o® = (22,000, 112,2), and a® = (0004, 112,2,4). See Figure 4.

Note that a 0 in o(*) means that the associated ball came from the original set of balls whereas a j in o/(?)
means that the associated ball was thrown up by card Cj.

Figure 4: A 4-card sequence (Cy,Cs, C3,Cy) with the data (a(?), o, a® a3 o®) of when balls are thrown.
Here o~ and o are shown on the left and on the right, respectively, of each card C;.

The /(-card sequence (C1,...,Cy) can be recovered from (a!?, ... a(¥)) because the (b, k)-embedding of C;
is obtained from a(? by replacing every integer less than ¢ by 0 and every i by 1. Moreover, ali=1 is also
determined by a(? and the history of the balls thrown at beat i. More precisely, let §; be the first word in
=1 if there is at least one i in o”, and let §; = () otherwise. Then o~V is determined by o and §; as
follows. If 6; = 0, then o~ = o). Otherwise, "~ is obtained from a") by deleting all ’s, discarding all
empty words if there are any, and adding d; at the beginning.

Applying this process iteratively, the whole sequence (a(?), ... a®) is determined by the pair (v, ), where
v=a® and § = (6y,...,d;). Observe that the length of the word d; is equal to the total number of i’s in a(?,
which is also equal to the total number of i’s in §;41,...,ds, and a(®.

Example 4.2. The 4-card sequence in Figure 4 corresponds to the pair (v, d), where v = (0004, 112, 2,4), and
§ = (0000, 0011, 0,22).

The above observations imply that the f-card sequence (C1,...,Cp) can be identified with the pair (v, J).
This leads us to the following definition.

Definition 4.3. A (b, k,{)-embedding is a pair (v,0) of two sequences v = (v1,...,7) and § = (1,...,d¢)
satisfying the following conditions:

e Each ~; is a word of the form 0°01¢ ... £°¢ for some integers ¢y, c1,...,¢¢ > 0with 1 < cop+c1+---+c < k.
e The sum of the lengths of ~; for all i € [r] is equal to b.

e Each §; is a (possibly empty) word of the form 0% 1% ... (i — 1)%-1 for some integers do, dy,...,d;_1 >0
such that 0 < dp+d; +---+d;_1 < k and dy +dy + --- + d;_1 is equal to the total number of i’s in
Vs Yr and di41, 0542, .., 0.
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Let £(b, k, £) be the set of (b, k, ¢)-embeddings.

By the observations above, the map (Cy,...,Cy) — (v, 9) is a bijection from J (b, k, £) to E(b, k,£). In order
to enumerate £(b, k, £) we need some definitions.

For a nonnegative integer n, the complete homogeneous symmetric function hy(x1,...,%y) is defined by
ho(z1,.. ., 2m) = Z Zhit gl
i1t t+im=n
where the sum is over all m-tuples (iy,...,4,) of nonnegative integers summing to n. Note that we have

ho(l’h...,l'm) =1.

Definition 4.4. For indeterminates 21, ..., 2z, we denote by D, . ., the linear operator on the space of formal
power series in zj defined by
Dy szl =hn(1,21,. ., 26-1) 21 -

Note that this can be seen as a generalization of the ¢-derivative operator (d%)q, which is the linear operator
on the space of formal power series in z defined by

d
() Zn — (1 +q_|_ . _‘_qn—l)zn—l.
dz p

Hence D, . is equal to the operator (%)qz, which multiplies z and then takes the ¢-derivative.
Now we are ready to find an expression for the generating function for J(b, k, ¢) when k and ¢ are fixed.

Theorem 4.5. For fixzed positive integers k and £, we have

1

1 1
E T k. Db =[zF... 2k D. ..D, . ..---D, )
a (7 ) )x [Zl Z@] 1721 172[ 1,22 1,22,23 17"')527hk(17x71‘217...,$2£)

Proof. We proceed similarly as in the proof of Proposition 3.3. Let W be the set of words of the form 01 ... ¢
for some integers cg, c1,...,¢¢ > 0 with 1 <cog+c1+---4+ ¢ < k. For a word w = 0%1% ... ¢% € W, we define
len(w) =¢p + -+ + ¢¢ and

wt(w) = 27" -+ 2p".

Then we have

§ xlen(w) Wt(w) _ E x60+"'+022f1 Ce de = hk(la Ty T21y. .. ,LL’Z@) —1.
weW 1<co+--+ce<k

Therefore we obtain
1

A= =1+ xlen(w1)+...+len(wr) wt(w;) - - - wt(w,). 11
2—hp(l,z,z21,...,22) ;(ml .'%:)GWT (w1) (wr) (11)

First, we consider how the operator D,, ., acts on a monomial in the right-hand side of (11). For
(wi,...,w.) € W', we have

xlcn(wl)-}-----}-lcn(wr) Wt(wl) . wt(wr) _ xbz?l . Z;w
for some integers b > 1 and ny,...,ny > 0. Then
D, ... zexbz{“ szt = xbz]” s 2y i, (1, 21, . 20-1)
=zl ) Z 20zt
cotFcp_1=nyg

This implies that

D, . ,A=1+ > glen(wittlen(we) w () .. wi(wy.) wt(ug), (12)

(w1, ywyrue) € X

where X, is the set of tuples (wy,...,w.,us) such that w; € W for ¢ € [r] and u, is a word of the form
0c ... (¢ —1)%-1 for some nonnegative integers co, ..., ce—1 with the condition that co + - -+ ¢,—1 is equal to
the total number of £’s in w1, ..., w,.
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Next, we consider how the operator D, . ., acts on a monomial in the right-hand side of (12). For
(w1, ..., wr,up) € Xy, we have

glen(wi)tHlen(wr) wi () . wi(w,) wt(ug) = 2220 - - - zy"
for some integers b > 1 and ny,...,ny > 0. Then we have
b_n n b_n n
Dzl,...,zg_lx le U ZZE =T le o 'Zzehnz_1(17zl7 e uZZ72)
_ . bni ng § : c1 Ce—1
_le ..'Z[ Zl ...Ze_l'

Ccottcr_2=ng_1

This implies that

D, 2 D, ., A=1+ Z glen(wi)+-+len(w,) wt(wy) -+ - wt(w,) wt(ue) wt(ue—1),

(w1,ee W ug,up—1)EXo—1

£—1 £

where X,_; is the set of tuples (w1,...,w,, up, ug—1) such that (wy,...,w,,ue) € Xy and up_1 is a word of the
form 0% - - - (£ —2)-2 for some nonnegative integers cy, ..., c/—o with the condition that co+ - - -4 cs—2 is equal
to the total number of (£ — 1)’s in wy, ..., w,, uy.

Applying the above argument iteratively, we obtain that

Doy DaynyA=1+ > glen(wi+tlen(wr) wiy ) ooowt(wy ) wh(ug) - - wh(ug),  (13)
(W1, Wy, up,..ur ) EXT
where X7 is the set of tuples (ws,...,w,,us,...,ur) such that for each i € [r], w; € W and for each j € [{],
u; is a word of the form 0% ... (j — 1)%- for some nonnegative integers co, ..., c;j—1 with the condition that
co+ -+ ¢j—1 is equal to the total number of j’s in wy,...,wy, us, ..., u;j41. By equation (13), we have
k k 1 1 b
[zl e ZZ] 1— 2 T ?ZEDZI;ZQDZMZZ’ZS) e DZl,m,ZeA =1+ Z ‘YE;lx ’
b>1
where Y}, is the set of tuples (w1, ..., w,, up,...,u;) € Xy such that
glen(witlentor) gty ) - owh(wy) wh(ug) -+ wh(ug) = ab2] - 2
for some integers 0 < mnq,...,np < k.
It is immediate from the definitions of Y3 and £(b, k, £) that the map
(Wi, ..., we g, ... u1) = (7,0),
where 7 = (wy,...,w,) and § = (uy, ..., ug), is a bijection from Y} to £(b, k,¢). Therefore we conclude
L) (Vila? = 14> [k, O)]a® = J(b,k, 0)2",
b>1 b>1 b>0
which completes the proof. O

5. Rationality of the generating function

In this section, as a consequence of Theorem 4.5, we show that the generating function for J(b, k, ¢) with fixed
k and ¢ is a rational function. This is equivalent to the statement that the sequence {J(b, k,¢)}y>0 satisfies a
linear recurrence relation; see [17, Theorem 4.1.1].

We first review some basic properties of derivatives and g¢-derivatives and extend these properties to the
operator D,, . . . By the quotient rule in calculus, one can easily deduce that the derivative of a rational
function is also a rational function. For the g-derivative, it is well known [13, Equation (11.4.1)] that

(&) ji - )= San)

dx T —qx
This implies that the g-derivative of a rational function is also a rational function. Note that since

(12728

DZl,Zz”Z;I = (1+21+"'+Z{L)Zg = 1— 2
— <1
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we have

f(z2) — 21 f(2122)
D217Z2f(z2) = 1 :
—
Hence, if f(z2) is a rational function in z, then so is D, ., f(22).
Our strategy is to show that the operator D, . . , for any m > 2, also preserves the rationality of a formal

power series. To do this, we need the following two lemmas.

(14)

Lemma 5.1. For integers n > 0 and m > 2, we have

hn(1, 2 o) = Zm—1hn (1,21, ..oy Zm=1) — Zmhn(1, 21, - - - s Zm—2, Zm)
n\L; <1y« <m P P .
Proof. Let R[zq,..., 2| denote the space of polynomials in the variables z1, ..., z;. Consider the linear operator
) P poly: , D

A : R[z] — Rz, y] defined by

Alpz)) = & p(@) —y-ply)

r—y
Note that A (z") = >, z'yd. Hence, by letting * = z,,_1 and y = z, and applying this operator to
h(z1,-..,2%m—1), we obtain the desired identity. O
Lemma 5.2. For an integer m > 2, we have
Zm—1Dz1, 21 zmes = Zm Dz s,z 2w
D21,~-~,Zm+1 = .

Zm—1 — Zm

Proof. Both sides are linear operators in the space of formal power series in z,,41. Therefore, it suffices to show
that they act on zj;,,; in the same way, that is,

D n o Zm_1D211-~~7zm—1yz7n+l - ZmDZl»--~,Zm—275m72m+1 n
217~~-72m+1zm+1 - _ m—+1-
Zm—1 Zm
But this is equivalent to
h n _ melhn(lyzlw--;szl)_thn(lyzly---;sz%zm) n
n(1, 21,00, 2m) 2y = Zm+1)
Zm—1 — Zm
which follows from Lemma 5.1. O

Now we are ready to show that the operator D,, . preserves the rationality of a formal power series.

Proposition 5.3. Suppose that £ and m are integers with 2 < m < { and let z1,...,z¢ be indetermi-
nates. If f(z1,...,2¢) is a formal power series in zi,...,z¢ that is a rational function in z1,...,zs, then
Dy, o f(21,. .., 20) is a rational function in z1,..., 2.

Proof. If m = 2, the statement follows from (14). Suppose that the statement holds for m > 2. Then by
Lemma 5.2 the case of m + 1 also holds. The proof then follows by induction. O

Finally, we can prove the rationality of the generating function studied in the previous section.

Corollary 5.4. For fized positive integers k and £, the generating function

> Ik, 020

b>0
18 a rational function in the variable x.

Proof. By Theorem 4.5 and Proposition 5.3, we have

ZJ(b,k,K)mb:[zf---zéf]f(zl,...,Zg,m) (15)
b>0
for a formal power series f(z1,...,2¢,@) in 21,..., 2, that is a rational function in these indeterminates. If
g(z) is a formal power series in z that is a rational function in z and some other indeterminates, say u, ..., u,,
then by the quotient rule, [2¥]g(z) = k!g(®)(0) is a rational function in uy, ..., u,. Therefore the right-hand side
of (15) is a rational function in z as desired. O

By Corollary 5.4, for fixed positive integers k and ¢, the sequence {J(b, k, £) };,>0 satisfies a linear recurrence
relation. However, due to the complexity of its generating function formula in Theorem 4.5, finding an explicit
recurrence relation appears to be challenging. In [11], the authors used holonomic methods to find recurrence
relations for the number of multiset derangements. It would be interesting to see if their method can be applied
to the above sequence.
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6. Conclusion

In this paper, we found an expression for the generating function

> Ik, 02" (16)

b>0

for the number of multiplex juggling card sequences when the capacity k and the length ¢ are fixed. As a
consequence, we showed that this generating function is a rational function in z. Equivalently, the sequence
{J (b, k,€)}p>0 satisfies a linear recurrence relation.

Note that there are three parameters in the number J(b, k, £) and the generating function in (16) keeps track
of b. Therefore, it is natural to consider the following two generating functions:

> Ik, Oy", (17)

k>0

> b,k 0)2" (18)

>0

Since J(b,k,¢) = J(b,00,¢) for k > b, it is immediate that the generating function (17) is a rational function
in y. Using the transfer matrix method [17, Section 4.7], one can show that the generating function in (18)
is also a rational function in z. It would be very interesting to see if this rationality continues to hold for the
multivariate generating function, keeping track of all three parameters b, k, and /.

Problem 6.1. Determine whether the following is a rational function in the three variables x,y, z:

SO I,k )byt

b>0 k>0 £>0

Note that J(b, k, ¢) can be used to compute the number of ways to juggle b balls with capacity k for beats
1,...,¢ without any restrictions on the initial and final states of the balls. In order to enumerate periodic
multiplex juggling patterns, we need to consider the number Jy(b, k,¢) of f-card sequences (Ci,...,Cy) €
J (b, k,?) such that the departure composition of C; is equal to the arrival composition of Cyp. It would be
interesting to extend our results to Jy(b, k, £). We end this paper with the following problems.

Problem 6.2. For fixed k and /, find a formula for the generating function

> Jo(b, k, 0).

b>0

Problem 6.3. Determine whether the following is a rational function in the three variables x,y, z:

DD Tolb k, O)aytt

b>0 k>0 £>0
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