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Abstract: In the May 2025 issue of the Amer. Math. Monthly, Norman J. Wildberger and Dean Rubine
introduced a new kind of multi-indexed numbers, which they call ‘Geode numbers’, obtained from the Hyper-
Catalan numbers. They posed three intriguing conjectures about them, which are proved in this note.
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1. Introduction

In a recent captivating Monthly article [7], by Norman J. Wildberger and Dean Rubine, the authors utilize a
generating series to solve the general univariate polynomial equation. They also explored a “curious factor-
ization” of this hyper-Catalan generating series, and in the penultimate section, they made three conjectures
about this algebraic object that they termed the Geode array.

In this note, we prove these three conjectures. At least as interesting as the actual statements of the conjectures
(now theorems) is how we proved them, using several important tools of the trade.

The first tool is the multinomial theorem

(x1 + · · ·+ xr)
n =

∑
m1,....mr≥0
m1+···+mr=n

(
n

m1, . . . ,mr

)
xm1
1 · · ·xmr

r . (1)

The second tool is constant-term extraction, the third is Wilf-Zeilberger (WZ) algorithmic proof theory [8] and
the last-but-not-least tool is Lagrange Inversion [9] that states that: if u(t) and Φ(t) are formal power series
starting at t1 and t0, respectively, then u(t) = tΦ(u(t)) implies

[tn]u(t) =
1

n
[zn−1]Φ(z)n. (2)

Here [zn]F (z) means the coefficient of zn in the Laurent expansion of F (z). We shall use the notation CTCTCT zF (z)
for the constant-term of F (z).

Example 1.1. To make the WZ method readily accessible to the unfamiliar reader, let’s illustrate how the

technique works in proving the known identity
∑n
k=0

(
n
k

)2
=
(
2n
n

)
. As a first step, we divide both sides to

rewrite
∑n
k=0

(
n
k

)2(2n
n

)−1
= 1, identically a constant. Next, define F (n, k) :=

(
n
k

)2(2n
n

)−1
. The key here is that

the WZ algorithm generates automatically (implemented in the symbolic softwares Maple and Mathematica) a

companion function G(n, k) := −
(
n
k−1
)2(2n+2

n+1

)−1 3n+3−2k
n+1 . The theory anticipates that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k), (3)

which can be checked directly (for instance, divide both sides by F (n, k) and simplify the factorials). Now, sum
both sides of (3) over all integers k and note that both F (n, k) and G(n, k) have compact support (they lead
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to finite sums only). In addition, the right-hand side vanishes upon summation leaving behind the equation∑n+1
k=0 F (n + 1, k)−

∑n
k=0 F (n, k) = 0; that is, the quantity

∑n
k=0 F (n, k) is independent of n. Testing at, say

n = 0, shows that this constant value is indeed 1. That completes the proof of the desired identity via WZ.

We now bring in the relevant notation adopted in [7] with a caveat that indices are shifted slightly. Consider the
equation 0 = 1−α+

∑
k≥1 tkα

k+1 and denote its series solution by α = SSS[t1, t2, . . . ]. Letting SSS1 = t1 + t2 + · · · ,
Wildberger-Rubine proved [7, Theorem 12] the existence of a (remarkable!) factorization SSS − 1 = SSS1GGG and
the factor GGG[t1, t2, . . . ] (that they dubbed the Geode series). Furthermore, we opt to use G[m1,m2, . . . ] for the
coefficient of tm1

1 tm2
2 · · · in the polyseries GGG[t1, t2, . . . ]. We are now ready to state the three conjectures (now

labeled as theorems) from [7, Page 399] whose proof will be furnished in the next sections.

Theorem 1.1. For non-negative integers m1 and m2, we have

G[m1,m2] =
1

(2m1 + 2m2 + 3)(m1 +m2 + 1)

(2m1 + 3m2 + 3)!

(m1 + 2m2 + 2)!m1!m2!
.

Theorem 1.2. Denote m = ma +ma+1. For integers ma,ma+1 ≥ 0 there holds

G̃[ma,ma+1] =
(ama + (a+ 1)(ma+1 + 1))!

(a(m+ 1) + 1)(m+ 1)((a− 1)ma + a(ma+1 + 1))!ma!ma+1!
.

Theorem 1.3. For the 2a-variate case, we have

GGG[−f, f, . . . ,−f, f ] =
∑
n

anfn.

2. Proof of Theorem 1.1

For the sake of clarity, let’s describe this proof in some detail.

Suppose we are solving the polynomial equation 0 = 1− α+ t1α
2 + t2α

3 through the formal power series

α = SSS[t1, t2] =
∑

m1,m2≥0

C[m1,m2] tm1
1 tm2

2 .

Consequently, the corresponding Geode series becomes GGG[t1, t2] = SSS[t1,t2]−1
t1+t2

. We follow closely [9] to engage
the Lagrange Inversion in the extraction of the coefficients C[m1,m2] satisfying n = m1 + m2. Then, the
amalgamation of such monomials is given by (2) in the form of

∑
m1+m2=n

C[m1,m2] tm1
1 tm2

2 = [Y n]

(
3n+1∑
k=1

1

k
[zk−1]

(
1 + Y t1z

2 + Y t2z
3
)k)

= [Y n]
∑

m1,m2≥0

(
1+2m1+3m2

m1,m2,1+m1+2m2

)
1 + 2m1 + 3m2

Y m1+m2tm1
1 tm2

2

=
∑

m1,m2≥0
m1+m2=n

(
1+2m1+3m2

m1,m2,1+m1+2m2

)
1 + 2m1 + 3m2

tm1
1 tm2

2

=

n∑
m2=0

(
1+2n+m2

n−m2,m2,1+n+m2

)
1 + 2n+m2

tn−m2
1 tm2

2

=

n∑
k=0

(
n
k

)(
2n+1+k
n+1+k

)
2n+ 1 + k

tn−k1 tk2 .

For example, the following reveal both coefficients C[m1,m2] and G[m1,m2]:∑
m1+m2=3

C[m1,m2] tm1
1 tm2

2 = (t1 + t2)(5t21 + 16t1t2 + 12t22),

∑
m1+m2=4

C[m1,m2] tm1
1 tm2

2 = (t1 + t2)(14t31 + 70t21t2 + 110t1t
2
2 + 55t32).
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As a first step, we reprove that the linear term t2 + t3 divides the polynomial

Pn(t1, t2) :=

n∑
k=0

(
n
k

)(
2n+1+k
n+1+k

)
2n+ 1 + k

tn−k1 tk2 .

This is equivalent to proving that Pn(−t2, t2) = 0, which, in turn, is equivalent to the following identity:

n∑
k=0

(−1)k
(
n
k

)(
2n+1+k
n+1+k

)
2n+ 1 + k

= 0.

To continue, we invoke the role of the WZ method. Define the functions F (n, k) := (−1)k
(n
k)(2n+1+k

n+1+k )
2n+1+k and also

H(n, k) := −F (n, k) · k(n+1+k)
n(2n+1) to verify F (n, k) = H(n, k + 1)−H(n, k). The rest is routine [8].

Our next step will actually find G[m1,m2]. For that we perform the division Pn(t1,t2)
t1+t2

to obtain (algebraically)
that

[tn−1−i1 ti2]

(
Pn(t1, t2)

t1 + t2

)
=

i∑
j=0

(−1)i−j

(
n
j

)(
2n+1+j
n+1+j

)
2n+ 1 + j

= (−1)i[H(n, i+ 1)−H(n, 0)]

= (−1)iH(n, i+ 1)

=
1

2n+ 1

(
n− 1

i

)(
2n+ 1 + i

n+ 1 + i

)
which leads to (an equivalent form of) the first conjecture [7] on G[m1,m2], here stated as Theorem 1.1.

3. Proof of Theorem 1.2

Now that the reader, hopefully, is getting accustomed to our proof-procedure as depicted in Section 2, let’s move
on to the next conjecture [7, Page 399] which does generalize the one we just finished proving. For brevity,

denote G̃ = G̃[ma,ma+1] = G[0, 0, . . . ,ma,ma+1]. Again, we revive the Lagrange Inversion (2). Suppose
n = ma +ma+1. Then the total content of such monomials is encapsulated by

∑
ma+ma+1=n

G̃ tm2
a tm3

a+1 =
[Y n]

ta + ta+1

(a+1)n+1∑
k=1

1

k
[zk−1]

(
1 + Y taz

a + Y ta+1z
a+1
)k

=
[Y n]

ta + ta+1

∑
ma,ma+1≥0

( 1+ama+(a+1)ma+1

ma,ma+1,1+(a−1)ma+ama+1

)
Y ma+ma+1tma

a t
ma+1

a+1

1 + ama + (a+ 1)ma+1

=
∑

ma,ma+1≥0
ma+ma+1=n

( 1+ama+(a+1)ma+1

ma,ma+1,1+(a−1)ma+ama+1

)
1 + ama + (a+ 1)ma+1

tma
a t

ma+1

a+1

ta + ta+1

=

n∑
ma+1=0

( 1+an+ma+1

n−ma+1,ma+1,1+(a−1)n+m3

)
1 + an+ma+1

t
n−ma+1
a t

ma+1

a+1

ta + ta+1

=

n∑
k=0

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an+ 1 + k

tn−ka tka+1

ta + ta+1
.

As a first step, we justify that the linear term ta + ta+1 divides the polynomial

Pn(ta, ta+1) :=

n∑
k=0

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an+ 1 + k

tn−ka tka+1.

This is tantamount to Pn(−ta+1, ta+1) = 0 which is equivalent to the identity that

n∑
k=0

(−1)k

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an+ 1 + k

= 0.
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Again, apply the Wilf-Zeilberger approach with F (n, k) :=
(−1)k(n

k)( an+1+k
(a−1)n+1+k)

an+1+k and H(n, k) := −F (n, k) ·
k((a−1)n+1+k)

n(an+1) to verify F (n, k) = H(n, k + 1)−H(n, k). The rest is trivial.

Our next step will actually determine G̃[ma,ma+1]. To this effect, let’s divide Pn(ta,ta+1)
ta+ta+1

to obtain (routinely)

that

[tn−1−ia tia+1]

(
Pn(ta, ta+1)

ta + ta+1

)
=

i∑
j=0

(−1)i−j

(
n
j

)(
an+1+j

(a−1)n+1+j

)
an+ 1 + j

= (−1)i[H(n, i+ 1)−H(n, 0)] = (−1)iH(n, i+ 1)

=
1

an+ 1

(
n− 1

i

)(
an+ 1 + i

(a− 1)n+ 1 + i

)
which proves the desired conjecture on G̃[ma,ma+1].

4. Proof of Theorem 1.3

The proof of this last conjecture [7, Page 399] is a bit more complicated.

To begin, we make a slight alteration by writing (−1)iti instead of the customary plain ti [7]. Thanks to the
Lagrange Inversion (2), we have

[Y n]

( ∞∑
k=1

1

k
[zk−1]

(
1− Y t1z2 + Y t2z

3 − · · · − Y t2a−1z2a + Y t2az
2a+1

)k)

=[Y n]
∑

m1,...,m2a≥0

(−1)m1+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a

m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
(Y t1)m1 · · · (Y t2a)m2a

1 + 2m1 + 3m2 + · · ·+ (2a+ 1)m2a

=
∑

m1,...,m2a≥0
m1+···+m2a=n

(−1)m1+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a

m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
tm1
1 · · · t

m2a
2a

1 + 2m1 + 3m2 + · · ·+ (2a+ 1)m2a
.

First, consider the case a = 1 and refer back to Theorem 1.1 (and its proof), to gather that if t1 = −f and
t2 = f then, as expected, we arrive at

fn−1
n−1∑
m=0

(−1)n−1−m

2n+ 1

(
n− 1

m

)(
2n+ 1 +m

n+ 1 +m

)
= fn−1

as justified by the WZ-certificate [8] given by

R(n,m) :=
m(8mn+ 10n2 + 6m+ 15n+ 6)

2(2n+ 3)(n+ 1)(n−m)
.

Second, we go back to study the above-posed calculations when a > 1. To set the stage, substitute

t1 = t2 = · · · = t2a−1 = f

while leaving out t2a as an indeterminate. The outcome takes the form

∑
m1,...,m2a≥0
m1+···+m2a=n

(−1)m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a

m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
fn−m2atm2a

2a

1 + 2m1 + 3m2 + · · ·+ (2a+ 1)m2a
.

At this point, divide out the current polynomial (in t2a) by the linear factor

−t1 + t2 − · · · − t2a−3 + t2a−1 − t2a−1 + t2a = t2a − f

and then replace t2a by f . That leads to the sum

fn−1
n−1∑
i=0

i∑
m2a=0

∑
m1,...,m2a≥0
m1+···+m2a=n

(−1)1+m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a

m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
1 + 2m1 + 3m2 + · · ·+ (2a+ 1)m2a

.
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Therefore, our main task that remains is to prove the identity declared by

n−1∑
i=0

∑
m1,...,m2a−1≥0
m1+···+m2a=n

0≤m2a≤i

(−1)1+m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a

m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
1 + 2m1 + 3m2 + · · ·+ (2a+ 1)m2a

= an−1.

To put this more succinctly, introduce some notation. Let P denote the set of all integer partitions λ, written
as λ = (λ1, λ2, . . . ) or λ = 1m12m2 . . . (2a)m2a . The size of λ is denoted by |λ| = λ1 + λ2 + · · · = m1 + 2m2 +
· · ·+ (2a)m2a while we use `(λ) = m1 +m2 + · · ·+m2a for the length of the partition. So, the claim stands at

∑
λ∈P
`(λ)=n
λ1≤2a

(−1)1+|λ| ·
(n−m2a)

(
n

m1,...,m2a

)(|λ|+n+1
|λ|+1

)
|λ|+ n+ 1

= an−1. (4)

We find it more convenient to split up this assertion into two separate claims

(−1)1
∑
λ∈P
`(λ)=n
λ1≤2a

(−1)|λ|
(

n

m1, . . . ,m2a

)(
|λ|+ n

|λ|+ 1

)
= 0, (5)

∑
µ∈P

`(µ)=n−1
µ1≤2a

(−1)|µ|
(

n− 1

m1, . . . ,m2a

)(
|µ|+ 2a+ n

|µ|+ 2a+ 1

)
= an−1. (6)

One arrives at (5) due to

n
(|λ+n+1
|λ|+1

)
|λ+ n+ 1

=

(
|λ+ n

|λ|+ 1

)
and (6) arises because of m2a

(
n

m1,...,m2a

) (|λ+n)!
(|λ+1)!n! =

(
n−1

m1,...,m2a−1
)(|λ|+n
|λ|+1

)
and then we reindex m′2a = m2a − 1 to

convert |λ| = |µ|+ 2a where `(µ) = n− 1.

In fact, let’s generalize (5) and (6) by introducing an extra parameter x.

Claim 1: For positive integers n, a and an indeterminate x, we have∑
λ∈P
`(λ)=n
λ1≤2a

(−1)|λ|
(

n

m1, . . . ,m2a

)(
|λ|+ n+ x

n− 1

)
= 0.

Claim 2: For positive integers n, a and an indeterminate x, we have∑
λ∈P

`(λ)=n−1
λ1≤2a

(−1)|λ|
(

n− 1

m1, . . . ,m2a

)(
|λ|+ n+ x

n− 1

)
= an−1.

Claim 2 implies Claim 1: Assuming n = k1 + · · ·+ kr, we apply the multinomial recurrence(
n

k1, . . . , kr

)
=

(
n− 1

k1 − 1, . . . , kr

)
+ · · ·+

(
n− 1

k1, . . . , kr − 1

)
(7)

followed by appropriate reindexing (observe: if mi in λ drops to mi − 1 in µ then |λ| = |µ|+ i) so that∑
λ∈P
`(λ)=n
λ1≤2a

(−1)|λ|
(

n

m1, . . . ,m2a

)(
|λ|+ n+ x

n− 1

)

=

2a∑
i=1

∑
λ∈P
`(λ)=n
λ1≤2a

(−1)|λ|
(

n− 1

m1, . . . ,mi − 1, . . .m2a

)(
|λ|+ n+ x

n− 1

)
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=

2a∑
i=1

∑
µ∈P

`(µ)=n−1
µ1≤2a

(−1)|µ|+i
(

n− 1

m1, . . . ,m′i, . . .m2a

)(
|µ|+ n+ (x+ i)

n− 1

)

=

2a∑
i=1

(−1)i
∑
µ∈P

`(µ)=n−1
µ1≤2a

(−1)|µ|
(

n− 1

m1, . . . ,m′i, . . .m2a

)(
|µ|+ n+ (x+ i)

n− 1

)

=an−1
2a∑
i=1

(−1)i = 0.

Proof of Claim 2: Let’s now utilize the multinomial theorem (1) and constant-term extraction. Start by noting
the constant-term extraction(

|λ|+ n+ x

n− 1

)
=

(
m1 + 2m2 + · · ·+ (2a)m2a + n+ x

n− 1

)
= CTCTCT z

[
(1 + z)m1+2m2+···+(2a)m2a+n+x

zn−1

]
.

Insert this into the left-hand side of Claim 2, take CTCTCT z outside the sum, factor out the inside and reapply the
multinomial theorem in reverse (1) to get∑

λ∈P
`(λ)=n−1
λ1≤2a

(−1)|λ|
(

n− 1

m1, . . . ,m2a

)(
|λ|+ n+ x

n− 1

)

=CTCTCT z

[
(1 + z)n+x

zn−1

∑(
n− 1

m1, . . . ,m2a

)
(−1− z)m1(−1− z)2m2 · · · (−1− z)(2a)m2a

]
=CTCTCT z

[
(1 + z)n+x

zn−1
{
−(1 + z)1 + (1 + z)2 − (1 + z)3 + · · ·+ (1 + z)2a

}n−1]
.

Next, follow through with the geometric series expansion to obtain

∑
λ∈P

`(λ)=n−1
λ1≤2a

(−1)|λ|
(

n− 1

m1, . . . ,m2a

)(
|λ|+ n+ x

n− 1

)
=CTCTCT z

[
(−1)n−1

(1 + z)2n+x−1

zn−1

{
1− (1 + z)2a

2 + z

}n−1]

=CTCTCT z

 (1 + z)2n+x−1

(2z)n−1

{
z
∑2a
k=1

(
2a
k

)
zk−1

1 + z
2

}n−1 = an−1.

The proof is indeed complete.

5. Conclusion

In this last section, we have elected to leave the reader with some final but motivating pointers.

Remark 5.1. On [7, Page 399], it is stated that “With k − 2 leading zeros, we conjecture that G[0, . . . ,mk]
is a two-parameter Fuss-Catalan number.” For Fuss-Catalan numbers, see [2], [5]. In light of the conjectures
we already proved, the current claim is rather obvious (for further discussion on the topic the reader is directed
to [4]).

Remark 5.2. One can prove both Theorem 1.1 and 1.2 with the following observation. It suffices to explain
this for Theorem 1.1. Since C[m1,m2] are known from the Lagrange Inversion and because we have and explicit
conjectured formula G[m1,m2] due to [7], all that is required is to verify the relation G[m1−1,m2]+G[m1,m2−
1] = C[m1,m2]. This, however, is routine. Of course, the proofs in Section s1 and 2 do not assume knowing
C[m1,m2] and G[m1,m2] a priori: they are pure derivations from scratch.

Remark 5.3. We offer (the proof is analogous to Theorem 1.2 but omitted) the assertion that

G[0, . . . , 0,ms, 0, . . . ,mt] =
1

n

i∑
j=0

(−1)i−j
(
n

j

)(
(s+ 1)n+ (t− s)j

n− 1

)
,

where we used ms = n− 1− i,mt = i.
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Remark 5.4. We also offer (the proof is analogous to Theorem 1.3 but omitted) the assertion that for a
generalized 2a-variate case, we have

GGG[−caf, c1f,−c1f, c2f,−c2f, · · · , ca−1f,−ca−1f, caf ] =
∑
n

(2aca − c1 − c2 − · · · − ca)nfn.
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