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Abstract: We begin with three formulas involving integer partitions, polynomials over Fq, and Dirichlet
series that have strong similarities. These formulas can be unified and extended by a general result involving
factorization in a free monoid. The key fact underlying this approach is that for certain subsets S (called
cyclotomic sets) of the positive integers, the numerator and denominator of a certain rational function GS(x)
are products of cyclotomic polynomials. We then investigate properties of cyclotomic sets and conclude with a
connection between certain cyclotomic sets and commutative algebra.
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1. Introduction

We begin by stating three formulas. A glance at them makes it obvious that there is some connection among
them. The main goal of this paper is to explain and extend this connection. This explanation is stated in terms
of free monoids, so in Section 2 we develop the necessary background information on free monoids. In Section 3
we give a general formula (Theorem 3.1) involving free monoids and cyclotomic polynomials. This formula
is the main result of this paper; what follows are applications and enhancements. The key fact underlying
Theorem 3.1 is that for certain subsets S (called cyclotomic sets) of the positive integers, both the numerator
and denominator of a certain rational function GS(x) are products of cyclotomic polynomials. We explain in
Section 4 the connection with the three formulas and how they can be generalized. In Section 5, we investigate
properties of cyclotomic sets, and finally in Section 6, we discuss a connection between certain cyclotomic sets
and commutative algebra.

First formula (Example 4.1). By a partition λ of an integer n ≥ 0, we mean a sequence λ = (λ1, λ2, . . . ) of
integers λi satisfying λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑
λi = n. Thus λi = 0 for all but finitely many i. A nonzero λi is

a part of λ. Let f(n) denote the number of partitions of n for which no part appears exactly once, i.e., for each
k ≥ 1 there is not exactly one i for which λi = k. For instance, when n = 8, there are six such partitions: 44,
3311, 2222, 22211, 221111, 11111111. MacMahon [10, p. 54] proved the following formula [1] (in a dual form):∑

n≥0

f(n)xn =
∏
k≥1

1− x6k

(1− x2k)(1− x3k)
. (1)

Second formula (Example 4.6). Let g(n) denote the number of monic polynomials H(t) over the finite field
Fq such that when H(t) is factored into irreducible factors over Fq, no irreducible factor occurs with multiplicity
one. Such polynomials are called powerful. Then [13,18]∑

n≥0

g(n)xn =
1− qx6

(1− qx2)(1− qx3)
. (2)

Third formula (Example 4.9). Let S denote the set of positive integers m such that no prime p divides m with
multiplicity one, i.e., if p|m then p2|m. Such integers are called powerful, in analogy to powerful polynomials.
(The irreducible factors in both cases have multiplicity at least two.) Let ζ(s) denote the Riemann zeta function,
i.e., ζ(s) =

∑
n≥1 n

−s (when the real part of s exceeds 1). Then [6, eqn. (10)]∑
n∈S

n−s =
ζ(2s)ζ(3s)

ζ(6s)
. (3)
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Obviously, the three formulas are related in some way. The next two sections develop a general result
(Theorem 3.1), which we use in Section 4 to explain the three formulas.

2. A free monoid

Let N = {0, 1, 2, . . . }, and let M denote a free commutative monoid with countably infinitely many generators.
In other words, M is isomorphic to the monoid N∞ consisting of all infinite sequences u = (u1, u2, . . . ), where
ui ∈ N and only finitely many ui 6= 0, under the operation of componentwise addition. The monoid M has a
unique basis B = {v(1), v(2), . . . }, where v(i) is the ith unit coordinate vector, i.e., v(i)i = 1 while v(i)j = 0
for j 6= i. Every u ∈ M can be uniquely written u = c1v(1) + c2v(2) + · · · , where ci ∈ N and all but finitely
many ci are zero. We call ci the multiplicity of v(i) in u, denoted ci = µu(v(i)). Let

ω : M→ Nm (4)

be a monoid homomorphism, where m ∈ P := {1, 2, 3, . . . } or m = ∞. We call ω a weight on M if ω−1(α)
is finite for all α ∈ Nm. In this situation, we will associate with the pair (M, ω) and a set S ⊆ P a certain
generating function FS(x). In some situations involving cyclotomic polynomials, FS(x) has a simple expression
in terms of F∅(x), as explained in the next section. In subsequent sections, we give three applications by suitable
choices of (M, ω), corresponding to the three formulas of Section 1.

If α = (α1, α2, . . . ) ∈ Nm we use the multivariate notation xα = xα1
1 xα2

2 · · · . Regarding (M, ω) as fixed,
consider the formal series

F (x) =
∑
u∈M

xω(u).

Because for each α ∈ Nm the set ω−1(α) is finite, the series F (x) is well-defined, i.e., has finite coefficients.
Clearly, from the definition of a free commutative monoid and the fact that ω is a homomorphism, we have

F (x) =
∏
v∈B

(
1 + xω(v) + x2ω(v) + · · ·

)
=

∏
v∈B

(1− xω(v))−1, (5)

where B is the unique basis for M. Now let S ⊆ P, and define

FS(x) =
∑
u∈M

v∈B⇒µu(v)6∈S

xω(u). (6)

Thus, the sum is over all elements u ∈ M such that no basis element v ∈ B appears in u with multiplicity
belonging to S. In particular, F (x) = F∅(x).

Since the multiplicities µu(v) can be chosen independently, we obtain as a generalization of equation (5) the
identity

FS(x) =
∏
v∈B

 ∑
j∈N−S

xjω(v)

 . (7)

Example 2.1. Consider the case S = {1}. In other words, in equation (6) we are summing over all elements
u ∈ M for which no basis element has multiplicity one. We could call such elements u powerful. Then
equation (7) becomes

F{1}(x) =
∏
v∈B

(
1 + x2ω(v) + x3ω(v) + x4ω(v) + · · ·

)
=

∏
v∈B

(
1 +

x2ω(v)

1− xω(v)

)

=
∏
v∈B

(
1− xω(v) + x2ω(v)

1− xω(v)

)
.

The key observation is that for an indeterminate z,

1− z + z2

1− z
=

1− z6

(1− z2)(1− z3)
. (8)
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Hence

F{1}(x) =
∏
u∈B

1− x6ω(v)

(1− x2ω(v))(1− x3ω(v))

=
F (x2)F (x3)

F (x6)
, (9)

We would like to find other sets S ⊆ P that yield formulas similar to equation (9). We discuss such sets in
the next section.

3. Cyclotomic polynomials and cyclotomic sets

In order to generalize equation (9) we introduce cyclotomic polynomials. Let n ≥ 1. The cyclotomic polynomial
Φn(x) (which we normalize to have constant term 1) is the polynomial over the rationals Q with constant term
1 whose zeros are the primitive nth roots of 1. Thus Φ1(x) = 1− x and

Φn(x) =
∏

1≤r≤n
gcd(n,r)=1

(
x− e2πir/n

)
, n ≥ 2,

and ∏
d|n

Φd(x) = 1− xn.

This last equation gives the factorization of 1− xn over the rationals. By a simple Möbius inversion argument,
we obtain the well-known formula

Φn(x) =
∏
d|n

(1− xd)µ(n/d),

where µ denotes the usual number-theoretic Möbius function. In particular, a polynomial P (x) ∈ Q[x] is a
product of cyclotomic polynomials if and only if it can be written in the form

P (x) =
(1− xa1) · · · (1− xas)

(1− xb1) · · · (1− xbt)

for some positive integers a1, . . . , as, b1, . . . , bt.
Note. Usually Φn(x) is normalized to be monic. This only makes a difference when n = 1. According to

our definition Φ1(n) = 1− x, while traditionally Φ1(x) = x− 1.
Let S ⊆ P, and define the generating function

GS(x) =
1

1− x
−
∑
j∈S

xj . (10)

We say that S is a cyclotomic set if GS(x) can be written as a rational function whose numerator and denom-
inator are finite products of cyclotomic polynomials. Equivalently, there exist positive integers a1, . . . , as and
b1, . . . , bt for which

GS(x) =

∏r
i=1(1− xai)∏t
j=1(1− xbj )

. (11)

Note that if S is any finite subset of P, then we can write

GS(x) =
NS(x)

1− x
,

where
NS(x) = 1− (1− x)

∑
j∈S

xj ∈ Z[x]. (12)

Moreover, S is cyclotomic if and only if NS(x) is a (finite) product of cyclotomic polynomials. By a well-known
theorem of Kronecker [5,9], this condition is equivalent to NS(x) having all its zeros α on the unit circle (|α| = 1).

We come to the main result of this paper. The next section explains how our three formulas in Section 1
are special cases. The original proofs of the first and third formulas at [10, p. 54] and [6, (10)] are essentially
specializations of our proof of the next result (Theorem 3.1). The first published proof [18] of the second formula
(2) does not follow this paradigm, unlike the later proof at [16, p. 152].
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Theorem 3.1. Suppose that S is cyclotomic, and let GS(x) be as in equation (10). Thus as in equation (11)
we can write

GS(x) =

∏r
i=1(1− xai)∏t
j=1(1− xbj )

for certain positive integers ai and bj. Then

FS(x) =

∏t
j=1 F (xbj )∏r
i=1 F (xai)

.

Proof. The argument is a direct generalization of Example 2.1. We have

FS(x) =
∏
v∈B

 1

1− xω(v)
−
∑
j∈S

xjω(v)

 .

But
1

1− xω(v)
−
∑
j∈S

xjω(v) =

∏r
i=1(1− xaiω(v))∏t
j=1(1− xbjω(v))

.

Hence

FS(x) =
∏
v∈B

(∏r
i=1(1− xaiω(v))∏t
j=1(1− xbjω(v))

)
.

Comparing with equation (5) completes the proof.

Like many general results in enumerative combinatorics, such as the Möbius inversion formula [14, Prop. 3.7.1]
and the Exponential Formula [15, Cor. 5.1.6], Theorem 3.1 per se is rather simple and unassuming. It is the
applications that make it interesting. We will give three such applications in Section 4 that explain the three
formulas in Section 1.

Example 3.1. (a) Equation (8) shows that the set S = {1} is cyclotomic.

(b) The set S = {1, 2, 3, 5, 7, 11} is cyclotomic. Indeed,

GS(x) =
Φ6(x)Φ12(x)Φ18(x)

Φ1(x)

=
(1− x12)(1− x18)

(1− x4)(1− x6)(1− x9)
. (13)

(c) For any integer k ≥ 1, the infinite set S = {k, k + 1, k + 2, . . . } is cyclotomic. Indeed,

GS(x) = 1 + x+ · · ·+ xk−1 =
∏
d|k
d6=1

Φd(x) =
1− xk

1− x
. (14)

It is natural to ask whether cyclotomic sets can be classified or whether they have any interesting properties
in addition to being cyclotomic. These questions will be the subject of Section 5.

4. The three formulas redux

4.1 MacMahon’s partition formula

Let Par denote the set of all partitions of all integers n ≥ 0. We make Par into a monoid by the operation
of multiset union of parts, denoted λ ∪ µ. That is, if mi(λ) is the number of parts of λ equal to i, then
mi(λ ∪ µ) = mi(λ) +mi(µ). Clearly Par is a free commutative monoid whose basis elements are the partitions
(i, 0, 0, . . . ) with only one part i > 0. We define the weight function ω : Par→ N by ω(λ) = n if λ is a partition
of n. Note that ω(λ ∪ µ) = ω(λ) + ω(µ), so ω is a monoid homomorphism. Then F (x) =

∑
n≥0 p(n)xn, where

p(n) denotes the number of partitions of n. Equation (5) becomes

F (x) =
∏
i≥1

(1− xi)−1,

the familiar generating function for p(n) going back to Leibniz and Euler. Finally Theorem 3.1 specializes to
the following result.
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Corollary 4.1. Suppose that S is a cyclotomic set so that equation (10) holds for certain positive integers ai
and bj. Let pS(n) denote the number of partitions of n none of whose part multiplicities belong to S. Then

∑
n≥0

pS(n)xn =
F (xb1) · · ·F (xbt)

F (xa1) · · ·F (xar )

=

∏r
i=1 (1− xai)

(
1− x2ai

) (
1− x3ai

)
· · ·∏t

j=1 (1− xbj ) (1− x2bj ) (1− x3bj ) · · ·
.

Example 4.1. Let S = {1}, a cyclotomic set (Example 3.1(a)). Thus pS(n) is the number of partitions of
n for which no part appears exactly once, denoted f(n) in equation (1). We obtain from equation (8) and
Corollary 4.1 that

FS(x) =
(1− x6)(1− x12)(1− x18) · · ·

(1− x2)(1− x4)(1− x6) · · · (1− x3)(1− x6)(1− x9) · · ·
, (15)

where x is a single variable because m = 1 in equation (4). Hence, we have proved our first formula (1) as a
consequence of Theorem 3.1.

The above formula illustrates a special feature of the monoid Par, namely, we obtain quotients of infinite
products that we can try to simplify by cancelling common factors in the numerator and denominator. The
denominator factors 1−xk in equation (15) have exponents k that are multiples of 2 or 3. Multiples of 6 appear
twice, once as multiples of 2 and once as multiples of 3. The numerator factor exponents are multiples of 6, so
they cancel one of the two such denominator factors. We are left with 1 in the numerator, and factors 1 − xk
in the denominator, each with multiplicity one, where k is divisible by 2 or 3. Equivalently, k 6≡ ±1 (mod 6). In
other words,

FS(x) =
∏

k 6≡±1 (mod 6)

(1− xk)−1.

We conclude that pS(n) (the number of partitions of n with no part appearing exactly once) is equal to the
number of partitions of n into parts not congruent to ±1 modulo 6. MacMahon [10, p. 54] was aware that

∏
k 6≡±1 (mod 6)

(1− xk)−1 =
∏
k≥1

1− x6k

(1− x2k)(1− x3k)
.

Let us call a cyclotomic set S clean (continuing to assume M = Par) if we can write

FS(x) =
∏
k∈T

(1− xk)−1 (16)

for some T ⊆ P. Thus {1} is clean. We consider equation (16) to be a “clean” partition identity—the coefficient
of xn in the expansion of the right-hand side has the simple interpretation of counting partitions of n whose
parts belong to T . For any particular cyclotomic set S, it is easy to determine whether it is clean, but we don’t
have a general theory of cleanness. Some examples are given below.

Example 4.2. We stated in Example 3.1(b) that the set {1, 2, 3, 5, 7, 11} is cyclotomic. This set turns out to
be clean. We have

FS(x) =
∏
i

(1− xi)−1,

where
i ≡ 0, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 30, 32 (mod 36). (17)

Thus, we obtain the following new result.

Theorem 4.1. For all n ≥ 0, the number of partitions of n such that no part occurs exactly 1,2,3,5,7, or 11
times equals the number of partitions of n into parts i satisfying equation (17).

Example 4.3. The infinite set S = {2, 3, 4, . . . } is cyclotomic and clean:

1

1− x
− (x2 + x3 + x4 + · · · ) =

1− x2

1− x
= 1 + x. (18)

We obtain the famous theorem of Euler that the number of partitions of n into distinct parts equals the number
of partitions of n into odd parts.
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Example 4.4. An example of a set that is cyclotomic but not clean is S = {1, 5, 7, 8, 9, 11}, for which

1

1− x
−
∑
j∈S

xj =
(1− x5)(1− x6)(1− x30)

(1− x2)(1− x3)(1− x10)(1− x15)
.

After canceling all possible numerator and denominator factors, we obtain

FS(x) =

∏
i(1− xi)∏
j(1− xj)

,

where i ranges over all positive integers satisfying

i ≡ ±5 (mod 30),

while j ranges over all positive integers satisfying

j ≡ ±2,±3,±4,±6,±8,±9,±10,±12,±14, 15 (mod 30).

4.2 Finite fields

Fix a prime power q. Let Pol denote the set of all monic polynomials H(t) ∈ Fq[t], where Fq is the finite field of
order q. We make Pol into a free commutative monoid by the operation of ordinary polynomial multiplication.
The identity element is the constant polynomial 1. The unique basis B for Pol consists of those polynomials in
Pol that are irreducible over Fq. For H ∈ Pol define ω(H) = degH. Clearly ω is a weight on Pol (with m = 1
in equation (4)).

The series F (x) (where x is a single variable since m = 1) is given by
∑
n≥0 f(n)xn, where f(n) is the

number of monic polynomials of degree n over Fq. Since such a polynomial has n coefficients which can be
chosen independently from Fq, we have f(n) = qn. Hence

F (x) =
∑
n≥0

qnxn =
1

1− qx
.

For S ⊆ P, the coefficient fS(n) of xn in FS(x) is equal to the number of monic polynomials of degree n over
Fq for which no irreducible factor has multiplicity j ∈ S. If S is a cyclotomic set and equation (11) holds, then

FS(x) =

∏r
i=1(1− qxai)∏t
j=1(1− qxbj )

.

Thus FS(x) is a rational function of x and q. We can expand this rational function by partial fractions with
respect to q and obtain, in principle, an explicit formula for fS(n). This formula will depend on the congruence
class of n modulo some integer N . For example, in Example 4.6 below, we have N = 6, and it is fortuitous that
fS(n) can be written in the condensed form (19).

Example 4.5. Let S = {2, 3, 4, . . . }. Then fS(n) is equal to the number of squarefree monic polynomials of
degree n over Fq. By the case k = 2 of Example 3.1(c) there follows

FS(x) =
1− qx2

1− qx
= 1 + qx+

∑
n≥2

(q − 1)qn−1xn,

whence fS(n) = (q−1)qn−1 for n ≥ 2, a well-known result going back at least to Carlitz [3]. (Carlitz in a footnote
on page 41 gives a reference to a proof by Landau in 1919 when q is prime.) Comparing with Example 4.3 shows
that the formula for fS(n) is a kind of “finite field analogue” (but not a q-analogue in the usual sense of this
term [14, pp. 30–31]) of the result of Euler given in Example 4.3.

Example 4.6. Let S = {1}, so fS(n) is the number of monic polynomials H(t) of degree n over Fq such that
every irreducible factor has multiplicity at least two, i.e., H(t) is powerful. From equation (8) there follows (in
analogy to equation (1))

FS(x) =
1− qx6

(1− qx2)(1− qx3)
,

which is our second formula (2). The partial fraction decomposition of FS(x) with respect to q is given by

FS(x) =
1 + x+ x2 + x3

1− qx2
− x(1 + x+ x2)

1− qx3
.

ECA 6:1 (2026) Article #S2R4 6



Richard P. Stanley

From this formula, it is not difficult to show that

fS(n) = qbn/2c + qbn/2c−1 − qb(n−1)/3c. (19)

This formula for fS(n) first appeared as a problem in [13], with a published solution by Stong [18]. The analogy
between equation (1) and the present example was noted by Stanley [16, p. 152]. In fact, it was this analogy
that inspired the present paper.

Example 4.7. Let S = {1, 2, 3, 5, 7, 11}. From equation (13), we get the following new result:

FS(x) =
(1− qx12)(1− qx18)

(1− qx4)(1− qx6)(1− qx9)

=
Φ2Φ4Φ8Φ7Φ14

Φ5(1− qx4)
+

Φ3Φ9 x
8

Φ5(1− qx9)

−Φ2Φ3Φ4Φ2
6Φ12 x

2

1− qx6
,

where Φj = Φj(x). A formula for fS(n) will involve the congruence class of n modulo 36 (the least common
multiple of 4, 6, and 9).

4.3 Dirichlet series

Perhaps the most familiar monoid that is isomorphic to M is the set P of positive integers under multiplication.
The basis elements are the prime numbers. What can we do with this choice of M?

If n = 2α13α25α3 · · · is the prime power factorization of n (so all but finitely many αi = 0) then define
ω : P → N∞ by ω(n) = (α1, α2, α3, . . . ), clearly a weight on P (with m = ∞ in equation (4)). If pi is the ith
prime (so p1 = 2, p2 = 3, p3 = 5, etc.), then change the indeterminate xi into p−si , where s is an indeterminate.
The “variables” p−si remain algebraically independent, so there is no loss of information in making this change
of notation. The power series

∑
α∈N∞ f(α)xα is converted into the Dirichlet series

∑
n≥1 g(n)n−s, where

n = 2α13α2 · · · and g(n) = f(α).

Writing F̃ (s) for F (x) and F̃S(s) for FS(x) after the above change of variables, we thus have

F̃ (s) =
∑
n≥1

1

ns
,

the Riemann zeta function ζ(s). For S ⊆ P we have

F̃S(s) =
∑
n∈T

1

ns
,

where T is the set of all n ∈ P such that no prime factor of n has multiplicity j ∈ S. When S is cyclotomic and
equation (11) holds, we obtain from Theorem 3.1 that

F̃S(s) =
ζ(b1s) · · · ζ(bts)

ζ(a1s) · · · ζ(ars)
.

Example 4.8. Let S = {2, 3, 4, . . . }. Then T is the set of squarefree positive integers. From equation (18)
there follows the well-known formula ∑

n≥1
n squarefree

1

ns
=

ζ(s)

ζ(2s)
.

Example 4.9. Let S = {1}. Integers for which no prime factor has multiplicity 1 are called powerful [6] [12].
We consider 1 to be powerful. From equation (8) we obtain [6, (10)]∑

n≥1
n powerful

1

ns
=
ζ(2s)ζ(3s)

ζ(6s)
, (20)

which is our third formula (3).
As a somewhat frivolous application, it is well-known that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(12) =

691π12

638512875
.
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Hence putting s = 1 and s = 2 in equation (20) gives [6, (13)]∑
n≥1

n powerful

1

n
=
ζ(2)ζ(3)

ζ(6)
=

315ζ(3)

2π4
= 1.943596 · · ·

and ∑
n≥1

n powerful

1

n2
=
ζ(4)ζ(6)

ζ(12)
=

15015

1382π2
= 1.100823 · · · .

5. Properties of cyclotomic sets

We have succeeded in our main goal of providing a unified explanation for the three formulas of Section 1 that
allows substantial generalization. One obvious question remains: what can we say about the cyclotomic sets
themselves? In general, the classification of cyclotomic sets, even the finite ones, is wide open. Some properties
of finite cyclotomic sets are given by the next two results. For a finite set S ⊂ P, write max(S) for the maximum
element of S.

Theorem 5.1. Let S be a finite cyclotomic set and d = max(S). Then for all 0 ≤ j ≤ d, exactly one of j and
d− j belongs to S. Hence #S = (d+ 1)/2, so in particular d is odd.

Proof. First note that when we write NS(x) as a minimal product of cyclotomic polynomials, the polynomial
Φ1(x) = 1 − x cannot appear as a factor. Otherwise, if we set x = 1 in equation (12), then the left-hand side
becomes 0 while the right-hand side becomes 1.

For n ≥ 2, it’s easy to see that
xφ(n)Φn(1/x) = Φn(x), (21)

where φ(n) = deg Φn(x). (It is irrelevant here that φ is the Euler phi function.)
The left-hand side of equation (12) has degree d+ 1. Since it is a product of cyclotomic polynomial Φn(x)

for n ≥ 2, we have by equation (21),

xd+1

1−
(

1− 1

x

)∑
j∈S

x−j

 = 1− (1− x)
∑
j∈S

xj .

This formula simplifies to

1 + x+ x2 + · · ·+ xd =
∑
j∈S

xj +
∑
j∈S

xd−j ,

and the proof follows.

Theorem 5.2. Let S be a finite cyclotomic set. When NS(x) is written as a minimal product of cyclotomic
polynomials Φn(x), then n 6= 1 and n 6= pk, where p is prime and k ≥ 1.

Proof. We saw in the previous proof that n 6= 1. Now put x = 1 in equation (12). Since Φpr (1) = p, the
left-hand side is divisible by p while the right-hand side is 1, a contradiction.

For any finite S ⊂ P, define NS(x) to be palindromic if xd+1NS(1/x) = NS(x), where d = max(S) =
degNS(x)−1. Hence, by equation (21), a necessary condition for S to be cyclotomic is thatNS(x) is palindromic.
There are 2(d−1)/2 sets S with max(S) = d, where d is odd, for which NS(x) is palindromic. Let c(d) be the
number of these that are cyclotomic. Here is a table of c(d) for d ≤ 29.

d 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
c(d) 1 2 3 5 5 9 10 12 18 22 22 37 39 41 54

Note that c(d) seems to grow much more slowly than 2(d−1)/2, perhaps a little faster than linearly. A very crude
upper bound on c(d) is the total number g(d) of polynomials of degree d + 1 that are products of cyclotomic
polynomials. Boyd and Montgomery [2] obtained an asymptotic formula for g(d) from which it follows that

log g(d) ∼ 1

π

√
105ζ(3)d,

where ζ denotes the Riemann zeta function. The same formula, attributed to Kotĕs̆ovec, is stated without proof
in [8]. Thus at least we know that c(d) has subexponential growth. It also can be deduced from Example 6.1(a)
that

g(d) ≥ #{(a, b) ∈ P× P : a < b, ab = d+ 1, gcd(a+ 1, b+ 1) = 1}.
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In particular, g(22k+1 − 1) ≥ k + 1.
The cyclotomic sets S with max(S) ≤ 9 are the following, where we we abbreviate e.g. {1, 2, 5} as 125.

1
13, 23

125, 135, 345
1237, 1247, 1357, 2367, 4567

12359, 12569, 13579, 14679, 56789

Some infinite families are clear, such as 1, 23, 345, 4567, 56789, . . . .
Aside. The palindromic polynomials of the form

NS(x) = 1− (1− x)
∑
j∈S

xj ,

where S is a finite subset of P, seem to have many zeros α on the unit circle (|α| = 1). There are 2b such
polynomials when max(S) = 2b + 1. For instance, when b = 16, the proportion of zeros that are on the unit
circle of the 216 = 65536 polynomials is

751153

1081344
= 0.69464 · · · .

No reason is currently known. Some further discussion appears on MathOverflow [17].

6. Numerical semigroups

We conclude this paper by explaining a connection between certain cyclotomic sets and commutative algebra.
A numerical semigroup is a submonoid M of N (under addition) such that N −M is finite. Thus M is closed
under addition and contains 0. The condition that N −M is finite entails no loss of generality, since every
submonoid of N is either {0} or of the form kM , where k ≥ 1 and M is a numerical semigroup. It is well known
that a numerical semigroup is finitely-generated.

Note. It would be more logical to use the term “numerical monoid” instead of “numerical semigroup.”
However, “numerical semigroup” is what appears in the literature, so we have adhered to this terminology.

Given a numerical semigroup M , define

AM (x) =
∑
i∈M

xi,

the Hilbert series of M . Note that

AM (x) =
1

1− x
−

∑
i∈N−M

xi.

Following Ciolan, Garćıa-Sánchez, and Moree [4], define a numerical semigroup to be cyclotomic if the product
(1−x)AM (x) is a product of cyclotomic polynomials. Thus, a numerical semigroup M is cyclotomic if and only
if N−M is a cyclotomic set. The set N−M , in addition to being cyclotomic, has the further property that its
complement M is closed under addition.

Example 6.1. (a) Let M be generated by a, b ≥ 2, denoted M = 〈a, b〉, with gcd(a, b) = 1. Then M is
cyclotomic, and

AM (x) =
1− xab

(1− xa)(1− xb)
.

For more information on such semigroups, see Moree [11].

(b) Let M = 〈4, 6, 7〉 = N− {1, 2, 3, 5, 9}. Then M is cyclotomic with

AM (x) =
(1− x12)(1− x14)

(1− x4)(1− x6)(1− x7)
.

(c) Let M = 〈5, 6, 7〉 = N− {1, 2, 3, 4, 8, 9}. Then M is not cyclotomic.

Example 6.2 below is a continuation of the previous example.
There is an interesting connection between cyclotomic semigroups and commutative algebra. Let K be a

field (Q will do) and M a numerical semigroup. The semigroup algebra K[M ] is the subalgebra of the polynomial
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ring K[z] generated by all monomials zi for i ∈ M . Thus, these monomials in fact form a K-basis for M . Let
M = 〈g1, . . . , gm〉. We say that M is a complete intersection if all relations among the generators zg1 , . . . , zgm

of K[M ] (as a K-algebra) are a consequence of m − 1 of them (the minimum possible). This condition is
independent of the choice of generators. Our definition of a complete intersection is a special case of a more
general definition from commutative algebra that we won’t give here.

A relation among the generators zgi will have the form

(zg1)
c1 · · · (zgm)

cm = (zg1)
d1 · · · (zgm)

dm

for nonnegative integers c1, . . . , cm, d1, . . . , dm. The degree of the relation is the integer
∑
gici =

∑
gidi. If M

is a complete intersection with M = 〈g1, . . . , gm〉, and if the minimal relations have degrees e1, . . . , em−1, then
it follows from elementary commutative algebra that

AM (x) =
(1− xe1) · · · (1− xem−1)

(1− xg1) · · · (1− xgm)
.

Hence if K[M ] is a complete intersection, then M is cyclotomic. Whether the converse holds is a central open
problem in the theory of cyclotomic numerical semigroups [4, Conj. 1].

Conjecture 6.1. If M is a cyclotomic numerical semigroup, then K[M ] is a complete intersection.

Example 3.1(a) shows that Conjecture 6.1 is true whenM is generated by two elements. Herzog [7, Thm. 3.10]
showed that it is also true when M is generated by three elements. In fact, he showed the following stronger
result (the fourth condition only implicitly).

Theorem 6.1. Let the numerical semigroup M be generated by three elements. The following four conditions
are equivalent.

• M is cyclotomic.

• K[M ] is a complete intersection.

• If S = N−M , then the polynomial 1− (1− x)
∑
j∈S x

j is palindromic.

• (for readers familiar with commutative algebra) K[M ] is a Gorenstein ring.

Example 6.2. (a) Let M = 〈a, b〉, with a, b ≥ 2 and gcd(a, b) = 1. Then K[M ] is a complete intersection.
The unique minimal relation is (za)b = (zb)a, of degree ab, in agreement with Example 3.1(a).

(b) The numerical semigroup M = 〈4, 6, 7〉 = N − {1, 2, 3, 5, 9} is cyclotomic. Setting a = z4, b = z6, and
c = z7, the minimal relations are a3 = b2 and a2b = c2, so K[M ] is a complete intersection. The degrees
of the relations are 12 and 14, so

AM (x) =
(1− x12)(1− x14)

(1− x4)(1− x6)((1− x7)
.

Note that there are many more relations among the generators, e.g., a7 = c4, but they are all consequences
of the minimal relations. For instance, squaring the second gives c4 = (a2b)2 = a4b2. Substituting b2 = a3

(the first relation) gives c4 = a4a3 = a7.

(c) The numerical semigroup 〈5, 6, 7〉 = N − {1, 2, 3, 4, 8, 9} is not cyclotomic. Setting a = z5, b = z6, and
c = z7, the minimal relations are a4 = bc2, b2 = ac, and c3 = a3b. Note that if we multiply the first
relation by b, obtaining a4b = b2c2, then substitute b2 = ac (the second relation) to get a4b = ac3, and
then divide by a, we get a3b = c3 (the third relation). So why isn’t the third relation a consequence of the
first two, so we have only two minimal relations? The answer is that dividing by a is not allowed; we are
only allowed to use algebra operations (linear combinations and multiplication) on the relations.
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