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Abstract: A one-lane road briefly expands to two lanes at a stoplight before merging back into one. Some10

drivers always choose the right lane, while others pick the shorter lane, favoring the right in a tie. In our11

previous paper, we represented arrival sequences as binary strings that created lattice paths, and analyzed how12

many vehicles end up in the left lane, drawing heavily on connections to ballot paths. Presently, we consider13

limited lane capacities: when the right lane fills, a gap can form in the left lane. We calculate the expected size14

of this gap based on the proportion of each driver type, including new bijections.15

Keywords: Ballot numbers; Bijections; Lattice paths; Traffic16

2020 Mathematics Subject Classification: 05A15; 05A1917

1. Introduction and background18

Imagine you are driving on a one-lane road that becomes two lanes, where there is a stoplight, and soon after,19

the left lane will have to merge into the right. Some drivers will stay in the right lane before the traffic light,20

regardless of its length. Others will choose the shortest lane, giving preference to the right lane when the lengths21

are equal.22

We model this situation using a binary string called an arrival sequence, assuming cars approach the stoplight23

one at a time with plenty of time to choose their preferred lane. Cars that do not want to merge, and that will24

always choose the right lane, are denoted with 0 and colored red in diagrams. Cars that prefer the shortest lane25

(with ties going to the right lane) are denoted by 1 and colored green.26

In Figure 1, we illustrate an arrival sequence in the capacity-constrained model: the two-lane segment can27

hold a fixed number of cars (the capacity m defined below), and once the right lane reaches capacity, subsequent28

cars cannot enter the left lane. If the arrival sequence is b = 001110011, then the first car will always choose29

the right lane, no matter what. In this case, Car 2 is red and will also choose the right lane. The next three30

cars are green; two will choose the left lane, and the third will choose the right, as the lanes will be equal in31

length at that point. (Green cars that end up in the right lane will appear as underlined blue digits in arrival32

sequences throughout the paper, for extra clarity.) Cars 6 and 7 are red and will choose the right lane. Finally,33

Cars 8 and 9 are green and would like to choose the left lane, but the right lane has reached capacity, so they34

are stuck behind Car 7. Here we say the lanes have a capacity of m = 5 and this arrival sequence gives a gap35

of size g = 3. We give the following definitions to make the discussion easier.36

Definition 1.1. Fix a lane capacity m ≥ 1. The capacity m is the maximum number of cars that can occupy37

the left lane after the split. An arrival sequence gives a gap of size g if the number of cars that reach the left38

lane is m− g.39

We only consider arrival sequences of length ` = 2m− 1 since the maximal number of cars that can end up40

in the left lane is m− 1. Notice this also means that g ≥ 1.41

Definition 1.2. The car that fills the right lane to capacity is called the block (or capacity car). The42

cars that arrive after the block and are unable to enter the right lane form the queue.43
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Figure 1: Nine cars waiting to merge for arrival sequence b = 001110011.

In Figure 1, Car 7 is the block, and the queue contains Cars 8 and 9. Notice the queue is always of size44

g − 1, since the moment the block occurs, there are m cars in the right lane and m− g cars in the left lane, so45

exactly (2m− 1)− (m+ (m− g)) = g − 1 cars remain, and these are precisely the cars in the queue.46

In earlier work [3], we computed the expected number of cars in the left lane given an unrestricted merging47

model. In this paper, we extend that model by introducing lane capacity constraints – a realistic feature of traffic48

systems where a fixed number of cars can occupy the two-lane segment near the intersection. This constraint49

leads to the formation of a gap in the left lane once the right lane fills. In the example above, the gap size is50

three because the left-lane capacity is m = 5, but only two green cars made it into the left lane before the red51

car labeled 7 blocked subsequent green cars from choosing the left lane.52

In order to find the expected gap size, we give the following definition.53

Definition 1.3. If Gm,g is the set of merging paths of length 2m− 1 with capacity m, and gap length g, then
let G(m, g) = |Gm,g| be the number of such paths and

G(m) =

m∑
g=1

g ·G(m, g).

So the expected gap size is

Em(g) =
G(m)

22m−1
.

Example 1.1. For m = 3, 4, the histogram in Figure 2 displays how their gap sizes are distributed.

1 2 3

12 12

8

Gap length g

m = 3

1 2 3 4

40 40

32

16

Gap length g

m = 4

Figure 2: Histogram for G(m, g) where m = 3 and m = 4.

54

So, the expected gap size for m = 3 is55

E3(g) =
1 · 12 + 2 · 12 + 3 · 8

12 + 12 + 8
=

12 + 24 + 24

32
=

60

32
= 1.875.56

and when m = 457

E4(g) =
1 · 40 + 2 · 40 + 3 · 32 + 4 · 16

40 + 40 + 32 + 16
=

40 + 80 + 96 + 64

128
=

280

128
= 2.1875.58

Our first main result is Corollary 3.1, which answers Open Question 39 from our previous paper [3].59

There, we asked for the expected size of the gap that forms when lane capacity is imposed on the merging model.60

This corollary provides an exact formula for the expected gap size and shows that it grows asymptotically like61

Em(g) ∼ 2
√
m/π.62
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The result highlights a surprising regularity: despite the stochastic arrival process and dynamic lane choices,63

the average gap exhibits a clean square-root behavior in terms of lane capacity. Our other main results include64

(1) several closed formulas and recurrences for the number of gap-inducing sequences with fixed red car count,65

(2) a surprising correspondence between merging paths and classical ballot paths, and (3) a refined enumeration66

of sequences by gap size and bounce structure.67

The remainder of the paper is organized as follows. In Section 2, we formalize the connection between arrival68

sequences and merging paths, a family of lattice paths which provide a geometric visualization of how gaps69

form. Section 3 focuses on enumerative results for fixed lane capacities, culminating in an exact and asymptotic70

formula for the expected gap size. In Section 4, we refine our analysis by fixing the number of red cars in the71

arrival sequence and explore the behavior of the function G(m, k, g). Section 5 develops connections between72

merging paths and classical ballot paths, leading to several closed formulas and bijective proofs. In Section 6,73

we consider refined counts based on the number of bounces in a merging path and derive further structural74

results. Finally, Section 7 investigates asymptotic behavior and gives exact expressions for the expected gap75

size when the number of red cars is fixed. We conclude with open problems and conjectures in Section 8.76

Building on the rich history of lattice path enumeration, Sections 2 and 5 introduce two important families:77

ballot paths and merging paths. Ballot paths are lattice paths that never dip below the diagonal and count78

the number of ways to tally a two-candidate election so that the leading candidate stays ahead throughout79

the count [1, 2, 12, 13]. Merging paths, as defined in our previous paper [3], generalize ballot paths. For a80

comprehensive history of lattice path enumeration, see Humphreys’ survey [5], which covers applications ranging81

from games [16] and electrostatics [9] to number theory [8,14] and statistics [6,11]. There is also a well-developed82

body of literature on bijections between lattice paths and other combinatorial structures [7, 10,15].83

2. Merging paths and gap formation84

Definition 2.1. To each arrival sequence, we can assign a (decorated) lattice path, which we call a merging85

path. This path is created by assigning an up-step to each red car (0), a right-step to each green car (1) when86

the lanes are uneven, and a decorated up-step (bounce) for a green car when the lanes are even.87

For instance, the merging path for the arrival sequence b = 00111001 is also shown in Figure 3. When a88

green car ends up in the right lane, we say that the merging path bounces off the diagonal, and we decorate89

the corresponding up-step by highlighting it with a bold blue arrow. Merging paths with no bounces are the90

famous ballot paths (i.e., lattice paths that do not cross below the diagonal). Hence, merging paths generalize91

the ballot paths. Ballot paths are used to enumerate the number of ways the ballots in a two-candidate election92

can be counted so that the winning candidate is never trailing.93

If an arrival sequences gives a gap of size g, then when the block occurs, there are m cars in the right lane94

(each contributing an up-step to the merging path) and m−g cars in the left lane (each contributing a right-step95

to the merging path). Moreover, the block must be either a red car or a bouncing green car, and so we have96

proven the following.97

Proposition 2.1. If b is an arrival sequence that gives a gap of g, then the corresponding merging path reaches98

the point (m− g,m) with an up-step, where m is the lane capacity. In other words, it passes through the point99

(m− g,m− 1).100

Figure 3: Merging path for the arrival sequence b = 001110011.

We will calculate the expected gap size over all arrival sequences of length 2m − 1 in Corollary 3.1. The101

following theorem calculates the numerator of that expected value calculation.102
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3. Expected gap size103

Theorem 3.1. Let G(m) be the sum of the gaps for the merging sequences with capacity m and length 2m− 1.104

Then105

G(m) =

m∑
g=1

g2g
(

2m− g − 1

m− g

)
= m

(
2m

m

)
.106

Proof. The merging path must reach (m − g,m − 1) and the g − 1 cars in the queue can be any set of green
and red cars, so the number of arrival sequences in Gm,g is Mm−g(m − 1)2g−1 where Mx(y) is the number of
merging paths reaching (x, y). From Theorem 6 of [3] we know the numbers Mx(y) have the following closed
formulas:

Mx(y) = 2

(
x+ y

x

)
for x < y, and My(y) =

(
2y

y

)
.

Substituting, multiplying by g, and summing over g ≥ 1, we have

G(m) =

(
2(m− 1)

m− 1

)
+

m∑
g=2

g2g
(

2m− g − 1

m− g

)
=

m∑
g=1

g2g
(

2m− g − 1

m− g

)
.

We just proved G(m) =
m∑
g=1

g2g
(

2m− g − 1

m− g

)
. To prove that G(m) = m

(
2m

m

)
we will now consider the

generating function

F (x, y) =
∑
n,m≥0

[
m∑
g=1

g2g
(
n+m− g − 1

m− g

)]
xmyn =

2x(1− x)

(1− 2x)2(1− x− y)
.

We are interested in the diagonal of this generating function, that is, the coefficient of xmym. A method107

for extracting the diagonal of a generating function can be found in Section 6.3 of Stanley’s text [15][p. 179].108

Briefly, create the Laurent series G(t, s) = F (s, t/s) so diag F = [s0]G. This often requires a partial fraction109

decomposition of G, regarded as a function of s, and using Cauchy’s Integration Theorem. Thus,110

diag F = [s0]F (s, t/s) =
1

2πi

∫
|s|=ρ

F (s, t/s)
ds

s
,111

where G converges on some circle |s| = ρ > 0. Applying this method to F , we obtain112

diag F =
2t

(1− 4t)3/2
.113

Finally, we extract the coefficient of tm to conclude that114

G(m) =

m∑
g=1

g2g
(

2m− g − 1

m− g

)
= m

(
2m

m

)
.115

The following corollary is immediate after dividing the result in Theorem 3.1 by 22m−1 and using Stirling’s116

Approximation.117

Corollary 3.1. The expected gap size Em(g) for all arrival sequences of length 2m− 1 and capacity m is118

Em(g) =

m

(
2m

m

)
22m−1

∼ 2
√
m/π.119

4. Arrival sequences with exactly k red cars120

In this section, we refine our analysis by fixing the number of red cars in the arrival sequence. Specifically, we121

classify all sequences of length 2m− 1 with exactly k red cars (0s) according to the gap size they produce, and122

we study the behavior of the function G(m, k, g), which counts how many such sequences yield a gap of size g.123

Definition 4.1. Let Gm,k,g be the set of arrival sequences of length 2m− 1 containing k 0s, that give a gap of124

g. Let G(m, k, g) = |Gm,k,g|, the number of such arrival sequences.125

ECA 6:2 (2026) Article #S2R9 4
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g
2 1 2 1 m = 2
1 1 2 1

3 1 3 3 1 m = 3
2 1 4 5 2
1 1 4 5 2

4 1 4 6 4 1 m = 4
3 1 6 12 10 3
2 1 6 14 14 5
1 1 6 14 14 5

5 1 5 10 10 5 1 m = 5
4 1 8 22 28 17 4
3 1 8 27 43 32 9
2 1 8 27 48 42 14
1 1 8 27 48 42 14

6 1 6 15 20 15 6 1 m = 6
5 1 10 35 60 55 26 5
4 1 10 44 96 109 62 14
3 1 10 44 110 151 104 28
2 1 10 44 110 165 132 42
1 1 10 44 110 165 132 42

0 1 2 3 4 5 6 7 8 9 10 11 k

Table 1: The values of G(m, k, g) from m = 2 to m = 6.

The following table gives the nonzero values of G(m, k, g) up to m = 6.126

Theorem 4.1. For any m, k > 0,127

G(m, k,m− 1) =

(
m

k −m+ 1

)
.128

Proof. A gap of size m− 1 can only occur if the arrival sequence begins with m red cars or a green car followed129

by m−1 red cars. In the first case, there are k−m red cars among the m−1 cars in the queue that can appear130

in any order. In the second case, there are k − m + 1 red cars among the m − 1 cars in the queue that can131

appear in any order. This gives a total of132 (
m− 1

k −m

)
+

(
m− 1

k −m+ 1

)
=

(
m

k −m+ 1

)
133

arrival sequences.134

The bottom two rows of each parallelogram of numbers in Table 1 are identical, giving us the following135

result.136

Theorem 4.2. For any m, k > 0,137

G(m, k, 1) = G(m, k + 1, 2).138

Proof. We start by noting that in order to get a gap of size 1, the penultimate car in the arrival sequence must139

be green. Changing that car to red gives one more red car and increases the gap to 2. Conversely, if the gap is140

2, then the block must be a red car. Switching it to a green car allows it to go into the left lane, decreasing the141

gap by 1 and decreasing the number of red cars by 1.142

5. Ballot path connections and bijections143

Next, we notice that the numbers appearing on the right side of each parallelogram of numbers in Table 1 are144

the ballot numbers. To prove this, we need the following lemmas giving important relationships between the145

number of green and red cars in the lanes and in the queue, and the number of bounces in the merging path.146

ECA 6:2 (2026) Article #S2R9 5
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Lemma 5.1. Let p ∈ Gm,k,g. Let b be the number of bounces in the merging path for p before the block, x be147

the number of green cars before the block, y be the number of green cars in the queue, and z be the number of148

red cars in the queue. We obtain the system of equations149

x+ y = 2m− k − 1 (1)150

y + z = g − 1 (2)151

x− b = m− g. (3)152

For reference, see Figure 1, where b = 1, x = 3, y = 2, and z = 0. As m = 5, k = 4, and g = 3, we can see153

all three equalities hold true.154

Lemma 5.2. Let p ∈ Gm,k,g. If b is the number of bounces in the merging path for p before the block, then155

b ≥ m− k.156

Proof. Subtracting (3) from (1) in Lemma 5.1 gives y + b = m− k + g − 1. The result follows since (2) implies157

y ≤ g − 1.158

Theorem 5.1. If k ≥ m+ g, then G(m, k, g) = 0. Furthermore, if k = m+ g − 1, then159

G(m, k, g) = B(m− g,m− 1) =

(
2m− g − 1

m− 1

)
−
(

2m− g − 1

m

)
160

where B(x, y) counts the number of ballot paths from (0, 0) to (x, y).161

Proof. Suppose k ≥ m+g, then Lemma 5.1 implies y+b < 0, an impossibility. Lemma 5.1 also implies y+b = 0162

when k = m+g−1. Since this is an equation of nonnegative integers, y = 0 and b = 0. For any p ∈ Gm,m+g−1,g,163

its merging path contains no bounces, reaches the point (m − g,m − 1), and has only 1s beyond this point.164

Clearly, the merging paths have a one-to-one correspondence with ballot paths to (m− g,m− 1). Substituting165

into the formula for ballot paths, B(x, y) =
(
x+y
y

)
−
(
x+y
y+1

)
, we obtain the result.166

The last of the obvious patterns in Table 1 occurs in the left half where m > k. We will establish the167

following theorem in two ways. The first is basic, using previous results and some convolution. The second168

gives a bijection between these numbers and odd-length ballot paths.169

Theorem 5.2. If m > k ≥ 0, then170

G(m, k, g) =

(
2m− 1

k − g + 1

)
−
(

2m− 1

k − g

)
= B(k − g + 1, 2m− k + g − 2).171

Proof. The merging paths counted by G(m, k, g) must reach the point (m− g,m) with an up-step, or merging
paths counted by G(m, k − 1, g) reaching the point (m − g,m − 1). Using Theorem 20 in [3], there would be(
2m−g−1
k−g−j+1

)
−
(
2m−g−1
k−g−j−1

)
merging paths when m > k. Suppose the arrival sequence beyond the block contains

j 0s. There would be
(
g−1
j

)
such subsequences. Adding over all possible j and using the Chu-Vandermonde

identity, we obtain

g−1∑
j=0

(
g − 1

j

)
Mm−g,k−j−1(m− 1) =

g−1∑
j=0

(
g − 1

j

)[(
2m− g − 1

k − g − j + 1

)
−
(

2m− g − 1

k − g − j − 1

)]

=

(
2m− 2

k − g + 1

)
−
(

2m− 2

k − g − 1

)
=

(
2m− 1

k − g + 1

)
−
(

2m− 1

k − g

)
172

Next, we prove Theorem 5.2 by finding a bijection from Gm,k−1,g−1 to Gm,k,g and then a bijection from173

Gm,k,1 to the odd length ballot paths.174

Theorem 5.3. If m > k > 0 and g > 2, then |Gm,k−1,g−1| = |Gm,k,g|.175

Proof. Let p ∈ Gm,k−1,g−1. Let Lp be the last point that the merging path for p reaches the diagonal, and176

let Sp be the ordered pair of steps just before and just after Lp. By Lemma 5.2, Lp is not the origin since the177

merging path contains at least two bounces.178

ECA 6:2 (2026) Article #S2R9 6
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Sp = (1, 1) Sp = (1, 0)

Figure 4: Two examples of the map φ, Sp = (1, 1) on left and Sp = (1, 0) on right. The steps above the red
horizontal line represent the cars in the queue.

Define φ : Gm,k−1,g−1 → Gm,k,g as follows. If p ∈ Gm,k−1,g−1, then φ(p) replaces Sp with a 0, and appends179

a 1 if Sp = (1, 1) or appends a 0 if Sp = (1, 0). See Figure 4 for an example. Notice that φ shifts the portion180

of the merging path of p past Sp to the left by 1, making it reach (m − g,m) with an up-step. Clearly φ(p)181

contains k 0s, so φ(p) ∈ Gm,k,g.182

Suppose for some p, q ∈ Gm,k−1,g−1, φ(p) = φ(q) = r ∈ Gm,k,g. Since φ shifts each point of the merging183

path of p past the last return to the diagonal to the left by one, the 0 that replaces Sp becomes that last time184

the merging path of p reaches the line y = x + 1. Thus, there is a unique 0 in r where the merging path for185

r reaches y = x + 1 for the last time, and must have replaced Sp by φ. This argument also applies to q, so186

Lp = Lq. The last bit of r uniquely determines what was replaced, so Sp = Sq. Finally, since φ doesn’t change187

any other part of an arrival sequence, we have that p = q. Therefore, φ is one-to-one.188

Finally, suppose r ∈ Gm,k,g. We locate the last return of the merging path for r to the line y = x+ 1, which189

must be a 0. Denote this point by Q. Replace that 0 with a (1, 0) if r ends in a 0, and a (1, 1) if r ends in a 1.190

Finally, remove the last step and call the new sequence p. This has the effect of shifting every point past that191

0 to the right by one and reduces the number of 0s by one, so p ∈ Gm,k−1,g−1. This also makes the point to192

the right of Q the last return to the diagonal by p. By the definition of φ, φ(p) = r, so φ is onto.193

Theorem 5.4. There is a one-to-one correspondence between Gm,k,1 and ballot paths reaching (k, 2m−k− 1).194

Proof. A ballot path reaching (k, 2m−k−1) can be associated with a binary sequence with k 1’s and 2m−k−1195

0’s. We create a merging path depending on whether the ballot path ends with a 0 or a 1.196

Case I: If the ballot path ends with a 0. Remove this 0, then reverse and invert the remaining binary197

sequence. Finally, end this new sequence with a 1 and call it p. Use p to create a merging path with k red198

cars and 2m − k − 1 green cars. See Figure 5 for an example of this map. By Lemma 18 in [3], b ≥ m − k.199

Inserting this into (3) gives g ≤ 1. Of course, this implies g = 1 since 1 is the smallest possible gap size. Thus,200

the merging path obtained by p is in Gm,k,1.201

Case II: If the ballot path ends with a 1. Remove this 1, then reverse and invert the remaining binary202

sequence. Finally, end this new sequence with a 0 and call it p. Argument proceeds exactly as in Case I from203

this point. Now, if p ∈ Gm,k,1, then the last step is an up-step. Removing this step gives a Dyck path. We can204

reverse this path to obtain a new Dyck path, and then change the bounces in p to up-steps. Lemma 5.1 implies205

that p contains m− k bounces. Finally, we add the appropriate final step to this ballot path (a 0 if p ends in a206

bounce, and a 1 otherwise). We leave it to the reader to verify that the ballot reaches the point (k, 2m− k− 1).207

208

6. Arrival sequences with exactly k red cars and b bounces209

Returning to Table 1 and focusing on the section where m = 6, the portion not covered by the previous theorems210

are in bold in the Table 2.

6 1 6 15 20 15 6 1
5 1 10 35 60 55 26 5
4 1 10 44 96 109 62 14
3 1 10 44 110 151 104 28
2 1 10 44 110 165 132 42
1 1 10 44 110 165 132 42

g/k 0 1 2 3 4 5 6 7 8 9 10 11

Table 2: Numbers not accounted for in the previous theorems where m = 6.

ECA 6:2 (2026) Article #S2R9 7
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Figure 5: Example of changing a ballot path to a merging path in Case I. Top: Step-by-step visual of the reversed
and inverted binary sequence with a new origin at the red circle. Bottom: ballot path and final merging path
reflected and shifted from the top right.

211

To analyze these remaining numbers, we expand the definition of Gm,k,g by also accounting for the number212

of bounces.213

Definition 6.1. Let Gm,k,g,b be the set of arrival sequences of length 2m− 1 containing k 0s, whose merging214

paths reach the point (m − g,m) with an up-step, and b bounces. The number of such arrival sequences is215

G(m, k, g, b).216

Tables 2 and 3 show the relationship between G(6, k, g) and G(6, k, g, b). Both have in bold the numbers217

where k− g = 2. The sum of a row of bolded numbers in Table 4 is equal to the bolded number in Table 3 with218

the corresponding value of k.

g
6 1 6 15 20 15 6 1
5 1 10 35 60 55 26 5
4 1 10 44 96 109 62 14
3 1 10 44 110 151 104 28
2 1 10 44 110 165 132 42
1 1 10 44 110 165 132 42

0 1 2 3 4 5 6 7 8 9 10 11 k

Table 3: The values of G(6, k, g) where the line k − g = 2 are bold.

219

Theorem 6.1. If g > 1 and k ≥ m, then220

G(m, k, g, b) =

(
g − 1

k −m+ b

)
B(m− g − b+ 1,m+ b− 1), (4)221

if b ≥ 1 and222

G(m, k, g, 0) =

(
g − 1

k −m

)
B(m− g,m− 1). (5)223

Proof. If a merging path contains zero bounces, then the portion reaching (m− g,m) with an up-step are the224

same as ballot paths reaching (m− g,m− 1). All of the cars in the right lane are red in this case, so there are225

k−m out of the remaining g− 1 cars that can appear in any order after the point (m− g,m). This proves (5).226

ECA 6:2 (2026) Article #S2R9 8
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1 10
2 9 1 44
3 8 2 35 9 110
4 7 3 27 16 1 75 35 165
5 6 4 20 21 3 48 54 8 90 75 132
6 1 5 5 24 6 14 60 21 1 28 96 27 42 90
7 5 10 20 36 4 42 60 7 56 48
8 10 10 30 24 1 42 20
9 10 5 20 6
10 5 1

k/b 0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 0 1 2 0 1
k − g = 0 k − g = 1 k − g = 2 k − g = 3 k − g = 4

Table 4: The values of G(6, k, g, b) where k − g = 2 are bold.

Now suppose b ≥ 1. In this case, there are m− b cars in the right lane, so there are k− (m− b) red cars out227

of the g− 1 cars in the queue that can appear in any order. Thus, what remains to prove is that the number of228

merging paths reaching (m− g,m− 1) with b bounces is the same as ballot paths to (m− g− b+ 1,m+ b− 1).229

Let M := Mm,g,b be the set of merging paths reaching (m−g,m−1) with b bounces and B := Bm,g,b be the230

set of ballot paths to (m− g − b+ 1,m+ b− 1). We define the map f : M → B by replacing the bounces with231

00s. Since the first bounce may be the first step, it may not be preceded by a 1, although every other bounce232

has a preceding 1. So, the map f replaces the first bounce with a 00 and replaces all other bounces, along with233

their preceding 1 with a 00. For example, f(10111010111000010) = 000100010100000010 shown in Figure 6.234

Our map is well-defined since replacing bounces with 00s ‘fixes’ the merging path into a ballot path that will235

never cross the diagonal y = x. Moreover, changing the preceding 1s to 0s shifts the end of the path up b − 1236

times and left b− 1 times.

Figure 6: Example of the bijection f .

237

Next, we show that f is one-to-one. Suppose x, y ∈M where x 6= y, and let k be the first position where x238

and y are unequal. If k is not a bounce for either, or if it is a bounce (not the first) for one but not the other,239

then clearly f(x) 6= f(y). The only interesting case is when k is the first bounce for one (say x), and the first240

bounce for y occurs after k. Suppose, for the sake of contradiction, f(x) and f(y) continue to agree until the241

first bounce for y. Then f(x) reached the diagonal again beyond the first bounce for x. This implies that x242

reached a point under the diagonal.243

Instead of directly showing f is onto, we define a map g : B →M and show that it is also one-to-one. This244

is a valid strategy since both sets are finite. The map g first changes the last occurrence of 00 from the diagonal245

to a 1, providing the first bounce. It then repeats the following b − 1 times: Change the last occurrence of246

00 from y = x + 1 to a 11, providing a bounce each time. Note that g is well-defined and outputs a merging247

path with b bounces. We only need to show that the ballot path will contain enough valid occurrences of 00s248

to replace.249

Suppose, for the sake of contradiction, that there are no more 00s from y = x+ 1 after i < b replacements.250

If b = 1, then the ballot path contains no 00s, giving a simple staircase pattern. This is impossible since the251

ballot path reaches (m− g,m), which is at least 2 above the diagonal. If b ≥ 2, then after i replacements, the252
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end of the path has been shifted down i times. At this point, the merging/ballot (‘merlot’, maybe?) path ends253

(m+ b− 1)− (m− g − b+ 1)− i = 2b+ g − 2− i above the diagonal. Our assumption is that this distance is254

not more than 2, so 2b + g − 2 − i ≤ 2 or 2b + g − 4 ≤ i < b. This implies that b + g < 4, which is impossible255

since g > 1.256

Finally, we show that g is also one-to-one. Suppose s, t ∈ B where s 6= t, and let k be the first position257

where s and t are unequal. Suppose after i replacements, k is the second 0 of the last 00 from y = x + 1 in s258

but not in t. Then s will have i+ 1 bounces by k, and t will not. In all other cases, clearly f(s) 6= f(t).259

7. Expected gap size with exactly k red cars and asymp-260

totics261

In Table 4 for fixed k − g, the columns sum to the same number when b ≥ 1. We do not have a combinatorial262

interpretation for this, but we record it in the following corollary.263

Corollary 7.1. If k − g = c ≥ 0 and b ≥ 1, then264 ∑
k

G(m, k, g, b) = B(c+ 1, 2m− c− 1).265

Proof. Substituting g = k + c into (4) in Theorem 6.1 gives266 ∑
k

G(m, k, g, b) =
∑

g≥m−b−c

(
g − 1

g − (m− b− c)

)[(
2m− g

m− g − b+ 1

)
−
(

2m− g
m− g − b

)]
.267

Using a variant of the Chu-Vandermonde identity,268 ∑
i≥0

(
x+ i

i

)(
y − i
s− i

)
=

(
x+ y + 1

r + s

)
,269

gives270 (
2m

c+ 1

)
−
(

2m

c

)
= B(c+ 1, 2m− c− 1).271

272

Definition 7.1. Let G(m, k) be the sum of the gaps for the merging sequences with capacity m, k red cars, and273

length 2m− 1. That is,274

G(m, k) =

m∑
g=1

g ·G(m, k, g).275

Our results so far give formulas for G(m, k). We record this with the following theorem.276

Theorem 7.1. If m > k ≥ 0, then277

G(m, k) =

k∑
i=0

(
2m− 1

i

)
.278

If k ≥ m, then279

G(m, k) =

2m−2−k∑
i=0

(
2m− 1

i

)
+ (k −m+ 1)

(
2m

k + 1

)
.280

Proof. When m > k, Theorem 5.2 applies, and we obtain a sum that simplifies as follows.281

G(m, k) =

m∑
g=1

g

[(
2m− 1

k − g + 1

)
−
(

2m− 1

k − g

)]
=

k∑
i=0

(
2m− 1

i

)
.282

When k ≥ m, we substitute the results of Theorem 6.1 into the fact that G(m, k, g) =
∑
bG(m, k, g, b) to obtain283

G(m, k) =

m∑
g=1

g

( g − 1

k −m

)
B(m− g,m− 1) +

∑
b≥1

(
g − 1

k −m+ b

)
B(m− g − b+ 1,m+ b− 1)

 .284
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Interchanging the sums, using the formula for the ballot numbers, and a little algebra with the binomial285

coefficients gives286

G(m, k) =

m∑
g=0

(k −m+ 1)

(
g

k −m+ 1

)[(
2m− g − 1

m− 1

)
−
(

2m− g − 1

m

)]
287

288

+
∑
b≥1

m∑
g=0

(k −m+ b+ 1)

(
g

k −m+ b+ 1

)[(
2m− g − 1

m+ b− 1

)
−
(

2m− g − 1

m+ b

)]
.289

The inner sums are examples of a variant of the Chu-Vandermonde identity:290 ∑
i≥0

(
x− i
r

)(
y + i

s

)
=

(
x+ y + 1

r + s

)
.291

Applying it gives292

G(m, k) = (k −m+ 1)

[(
2m

k + 1

)
−
(

2m

k + 2

)]
+
∑
b≥1

(k −m+ b+ 1)

[(
2m+ 1

k + 2b+ 1

)
−
(

2m+ 1

k + 2b+ 2

)]
.293

294

= (k −m+ 1)

[(
2m

k + 1

)
−
(

2m

k + 2

)]
+
∑
b≥1

(k −m+ b+ 1)

[(
2m

k + 2b

)
−
(

2m

k + 2b+ 2

)]
.295

This sum also simplifies in a similar way as the m > k case, giving the result.296

Corollary 7.2. The expected gap size Em,k(g) for arrival sequences of length 2m−1 with k red cars and capacity297

m is298

Em,k(g) =

[
k∑
i=0

(
2m− 1

i

)]/(
2m− 1

k

)
<

1− α
1− 2α

.299

where α = k/(2m− 1) and k < m. When k ≥ m,300

Em,k(g) =

[
2m−1−k∑
i=0

(
2m− 1

i

)
−
(

2m− 1

k

)
+ (k −m+ 1)

(
2m

k + 1

)]/(
2m− 1

k

)
301

302

<
1− α
2α− 1

+
2m(k −m+ 1)

k + 1
.303

Moreover, when k = m,304

Em,m(g) = 22m−1
/(

2m

m

)
+
m− 1

m+ 1
∼
√
mπ

2
+ 1.305

Proof. The proof follows from Theorem 7.1 and the following approximation306

∑
i≤αn

(
n

i

)/(
n

αn

)
<

1− α
1− 2α

307

found in exercise 42 on page 492 of [4].308

This figure shows that the approximations in Corollary 7.2 are accurate when |m − k| is sufficiently large,309

as well as when k = m.310

m 1 14 92 378 1093 2380 4096 5383 5097 3381 1548 469 85 7
6 1 12 67 232 562 1024 1354 1222 727 276 61 6
5 1 10 46 130 256 340 286 145 41 5
4 1 8 29 64 85 64 25 4
3 1 6 16 21 13 3
2 1 4 5 2
1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 k

Table 5: The values of G(m, k) for all arrival sequences of length 2m−1 with k red cars, where the lane capacity
is m.
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Figure 7: The blue curve shows the expected gap size for m = 100 and k red cars. The orange approximation
is using the upper bounds involving α in Corollary 7.2 along with the approximation when k = m.

8. Open problems and conjectures311

1. This paper considered the case where the right lane was preferable because the cars were forced to merge312

shortly after the light, but there are many instances of lights where a left-turn lane backs up and blocks the313

right lane. Create a combinatorial model for this scenario. Under what conditions should the turning-lane314

signals be given a green light before the through-traffic signals, and vice versa? Why are these phases not315

simultaneous, and how do their green-time durations differ?316

2. Find a more accurate approximation for Corollary 7.2 in the cases where k is close to m.317

3. Give a combinatorial interpretation of Corollary 7.1.318

4. Develop a combinatorial model that incorporates merging after the light.319
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